首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   394篇
  免费   34篇
  2024年   1篇
  2023年   2篇
  2022年   6篇
  2021年   13篇
  2020年   9篇
  2019年   9篇
  2018年   15篇
  2017年   6篇
  2016年   13篇
  2015年   17篇
  2014年   22篇
  2013年   31篇
  2012年   30篇
  2011年   30篇
  2010年   15篇
  2009年   18篇
  2008年   17篇
  2007年   19篇
  2006年   16篇
  2005年   13篇
  2004年   19篇
  2003年   14篇
  2002年   12篇
  2001年   6篇
  2000年   6篇
  1999年   7篇
  1998年   4篇
  1997年   4篇
  1996年   6篇
  1995年   4篇
  1994年   3篇
  1993年   5篇
  1992年   9篇
  1991年   7篇
  1990年   2篇
  1989年   3篇
  1988年   5篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1981年   1篇
  1979年   1篇
  1973年   1篇
排序方式: 共有428条查询结果,搜索用时 15 毫秒
1.
The sucrose operon from pUR400, a 78-kbp conjugative Salmonella plasmid, was cloned in Escherichia coli K12. The operon was located in a 5.7-kbp SalI restriction fragment and was subcloned, in each of two possible orientations, using the expression vector pUC18. The insert DNA was restriction mapped and duplicate restriction sites in the insert and in the polylinker of the vector were used to create various deletions promoter distal in the operon sequence. Additional deletions were made with the restriction exonuclease Bal31. Cells containing hybrid plasmids with specified deletions lacked the ability to transport sucrose or were constitutive for hydrolase and/or uptake activities. The scrA (enzyme IIScr) and scrR (regulatory) genes resided within 2900-bp SmaI-SalI DNA fragment and were assigned the order scrB, scrA, scrR. An amplified sucrose-inducible gene product, Mr 68,000, was detected only in the membrane fraction from recombinant cells that contained plasmid with the intact operon sequence. This protein represented 11% of the total membrane protein and was resistant to extraction with 0.5 M sodium chloride, 2% Triton X-100, and 0.5% sodium deoxycholate. The protein did not appear to be the product of either the scrA, scrB, or scrR gene and may therefore represent a previously unidentified membrane-bound sucrose protein. A new gene, scrC, is proposed. In addition, the cloned 5.7-kbp SalI and 2.5-kbp SmaI-SalI DNA fragments failed to hybridize to chromosomal DNA from Bacillus subtilis, Streptococcus lactis, Streptococcus mutans, and Lactobacillus acidophilus as well as to DNA from a sucrose plasmid from Salmonella tennessee. However, the probes showed weak homology with a 20-kbp EcoRI restriction fragment from Klebsiella pneumoniae.  相似文献   
2.
Dissolved nutrient inputs in bulk precipitation and outputs in streamwater were measured during 3 years of contrasting hydrological conditions in a 6.3-ha, grazed heathland watershed on schists in the Montseny mountains (NE Spain), drained by an intermittent stream. On average, 39% of the precipitation became streamflow. Bulk precipitation delivered positive net alkalinity (mean 0.22 keq/ha/yr), sulphate input was moderate (9.0 kg SO4-S/ha/yr), and the mean input of inorganic N was not exceptionally high (6.6 kg/ha/yr). Ion concentrations were relatively low in streamwater; SO4 2- was the dominant anion. Most concentrations in streamwater varied seasonally, with maxima in late summer or early autumn and minima in spring. This pattern probably resulted from increased availability of ions for leaching due to decomposition of organic matter and chemical weathering during the warm period. Nitrate concentrations were relatively high in winter and dropped sharply in early spring, probably because of biological uptake. Annual element outputs in streamwater varied between years and seemed to be controlled by both the amount of annual streamflow and its seasonal distribution. Annual inputs exceeded outputs for dissolved inorganic N. The watershed accumulated H+ and Ca2+, had net losses of Na+ and Mg2+, and was close to steady state for K+, SO4 2-, Cl- and alkalinity. The chloride budgets gave no evidence of substantial dry deposition in this system. The cationic denudation rate was negative (-0.14 keq/ha/yr) because Ca2+ retention was higher than net exports of Na+ and Mg2+ from silicate weathering. Low nutrient export and little production of alkalinity suggest that this watershed has a low buffering capacity.  相似文献   
3.
We studied the diel migrations of several species of microorganisms in a hypersaline, layered microbial mat. The migrations were quantified by repeated coring of the mat with glass capillary tubes. The resulting minicores were microscopically analyzed by using bright-field and epifluorescence (visible and infrared) microscopy to determine depths of coherent layers and were later dissected to determine direct microscopic counts of microorganisms. Microelectrode measurements of oxygen concentration, fiber optic microprobe measurements of light penetration within the mat, and incident irradiance measurements accompanied the minicore sampling. In addition, pigment content, photosynthesis and irradiance responses, the capacity for anoxygenic photosynthesis, and gliding speeds were determined for the migrating cyanobacteria. Heavily pigmented Oscillatoria sp. and Spirulina cf. subsalsa migrated downward into the mat during the early morning and remained deep until dusk, when upward migration occurred. The mean depth of the migration (not more than 0.4 to 0.5 mm) was directly correlated with the incident irradiance over the mat surface. We estimated that light intensity at the upper boundary of the migrating cyanobacteria was attenuated to such an extent that photoinhibition was effectively avoided but that intensities which saturated photosynthesis were maintained through most of the daylight hours. Light was a cue of paramount importance in triggering and modulating the migration of the cyanobacteria, even though the migrating phenomenon could not be explained solely in terms of a light response. We failed to detect diel migration patterns for other cyanobacterial species and filamentous anoxyphotobacteria. The sulfide-oxidizing bacterium Beggiatoa sp. migrated as a band that followed low oxygen concentrations within the mat during daylight hours. During the nighttime, part of this population migrated toward the mat surface, but a significant proportion remained deep.  相似文献   
4.
5.
Scytonemin, the yellow-brown pigment of cyanobacterial (blue-green algal) extracellular sheaths, was found in species thriving in habitats exposed to intense solar radiation. Scytonemin occurred predominantly in sheaths of the outermost parts or top layers of cyanobacterial mats, crusts, or colonies. Scytonemin appears to be a single compound identified in more than 30 species of cyanobacteria from cultures and natural populations. It is lipid soluble and has a prominent absorption maximum in the near-ultraviolet region of the spectrum (384 nm in acetone; ca. 370 nm in vivo) with a long tail extending to the infrared region. Microspectrophotometric measurements of the transmittance of pigmented sheaths and the quenching of ultraviolet excitation of phycocyanin fluorescence demonstrate that the pigment was effective in shielding the cells from incoming near-ultraviolet-blue radiation, but not from green or red light. High light intensity (between 99 and 250 μmol photon · m?2· S?1, depending on species) promoted the synthesis of scytonemin in cultures of cyanobacteria. In cultures, high light intensity caused reduction in the specific content of Chl a and phycobilins, increase in the ratio of total carotenoids to Chl a, and scytonemin increase. UV-A (320–400 nm) radiation was very effective in eliciting scytonemin synthesis. Scytonemin production was physiological and not due to a mere photochemical conversion. These results strongly suggest that scytonemin production constitutes an adaptive strategy of photoprotection against short-wavelength solar irradiance.  相似文献   
6.
Forty years ago, a high frequency of lethal giant larvae (lgl) alleles in wild populations of Drosophila melanogaster was reported. This locus has been intensively studied for its roles in epithelial polarity, asymmetric neural divisions, and restriction of tissue proliferation. Here, we identify a high frequency of lgl alleles in the Bloomington second chromosome deficiency kit and the University of California at Los Angeles Bruinfly FRT40A-lethal P collection. These unrecognized aberrations confound the use of these workhorse collections for phenotypic screening or genetic mapping. In addition, we determined that independent alleles of insensitive, reported to affect asymmetric cell divisions during sensory organ development, carry lgl deletions that are responsible for the observed phenotypes. Taken together, these results encourage the routine testing of second chromosome stocks for second-site alleles of lgl.  相似文献   
7.
8.

Coral cover and community structure in the Arabian Gulf have changed considerably in recent decades. Recurrent bleaching events have dramatically reduced the abundance of previously dominant Acropora corals and have given space to other more thermally resistant coral taxa. The loss of Acropora spp. has reduced reef structural complexity and associated biodiversity. Sir Bu Nair Island (SBN) is a nature reserve in the United Arab Emirates that sustains some of the last dense and extensive Acropora stands in the southern Gulf. This study investigated coral recruitment at a southern coral reef on SBN and examined larval dispersal and reef connectivity between SBN and other local and regional reefs through an agent-based model coupled with a 3D hydrodynamic model. Recruitment was surveyed with settlement tiles deployed from April to September 2019. Contrary to other reefs in the Gulf, we found that Acropora is indeed the major coral recruiter settling at SBN reefs, followed by Porites. The models indicate that SBN reefs are mostly self-seeding but also connected to other reefs in the Gulf. SBN can supply coral larvae to the neighbouring islands Siri and Abu Musa, and nearby reefs along with the north-eastern Emirates, Iranian coast and Strait of Hormuz. Findings highlight the importance of SBN to protect remnant populations of the locally almost extinct Acropora in a region where natural coral recovery is increasingly sparse.

  相似文献   
9.

Background

Rickettsia typhi is the etiological agent of murine typhus (MT), a disease transmitted by two cycles: rat-flea-rat, and peridomestic cycle. Murine typhus is often misdiagnosed and underreported. A correct diagnosis is important because MT can cause severe illness and death. Our previous seroprevalence results pointed to presence of human R . typhi infection in our region; however, no clinical case has been reported. Although cats have been related to MT, no naturally infected cat has been described. The aim of the study is to confirm the existence of R . typhi in our location analyzing its presence in cats and fleas.

Methodology/Principal Findings

221 cats and 80 fleas were collected from Veterinary clinics, shelters, and the street (2001-2009). Variables surveyed were: date of collection, age, sex, municipality, living place, outdoor activities, demographic area, healthy status, contact with animals, and ectoparasite infestation. IgG against R . typhi were evaluated by indirect immunofluorescence assay. Molecular detection in cats and fleas was performed by real-time PCR. Cultures were performed in those cats with positive molecular detection. Statistical analysis was carried out using SPSS. A p < 0.05 was considered significant.Thirty-five (15.8%) cats were seropositive. There were no significant associations among seropositivity and any variables. R . typhi was detected in 5 blood and 2 cultures. High titres and molecular detection were observed in stray cats and pets, as well as in spring and winter. All fleas were Ctenocephalides felis. R . typhi was detected in 44 fleas (55%), from shelters and pets. Co-infection with R . felis was observed.

Conclusions

Although no clinical case has been described in this area, the presence of R . typhi in cats and fleas is demonstrated. Moreover, a considerable percentage of those animals lived in households. To our knowledge, this is the first time R . typhi is detected in naturally infected cats.  相似文献   
10.
Long‐range, seasonal migration is a widespread phenomenon among insects, allowing them to track and exploit abundant but ephemeral resources over vast geographical areas. However, the basic patterns of how species shift across multiple locations and seasons are unknown in most cases, even though migrant species comprise an important component of the temperate‐zone biota. The painted lady butterfly Vanessa cardui is such an example; a cosmopolitan continuously‐brooded species which migrates each year between Africa and Europe, sometimes in enormous numbers. The migration of 2009 was one of the most impressive recorded, and thousands of observations were collected through citizen science programmes and systematic entomological surveys, such as high altitude insect‐monitoring radar and ground‐based butterfly monitoring schemes. Here we use V. cardui as a model species to better understand insect migration in the Western Palaearctic, and we capitalise on the complementary data sources available for this iconic butterfly. The migratory cycle in this species involves six generations, encompassing a latitudinal shift of thousands of kilometres (up to 60 degrees of latitude). The cycle comprises an annual poleward advance of the populations in spring followed by an equatorward return movement in autumn, with returning individuals potentially flying thousands of kilometres. We show that many long‐distance migrants take advantage of favourable winds, moving downwind at high elevation (from some tens of metres from the ground to altitudes over 1000 m), pointing at strong similarities in the flight strategies used by V. cardui and other migrant Lepidoptera. Our results reveal the highly successful strategy that has evolved in these insects, and provide a useful framework for a better understanding of long‐distance seasonal migration in the temperate regions worldwide.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号