首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   96篇
  免费   3篇
  国内免费   21篇
  2024年   1篇
  2023年   3篇
  2022年   3篇
  2021年   5篇
  2020年   2篇
  2019年   5篇
  2018年   6篇
  2017年   5篇
  2016年   13篇
  2015年   6篇
  2014年   9篇
  2013年   9篇
  2012年   5篇
  2011年   6篇
  2010年   2篇
  2009年   2篇
  2008年   5篇
  2007年   1篇
  2006年   7篇
  2005年   5篇
  2004年   3篇
  2003年   4篇
  2002年   3篇
  2000年   1篇
  1997年   3篇
  1996年   2篇
  1994年   2篇
  1992年   2篇
排序方式: 共有120条查询结果,搜索用时 15 毫秒
1.
Development of suitable antimicrobial biomaterials for hygienic wound dressing and healing is an important requirement for medical application. Durable mechanical properties increase the application range of biomaterial in different environmental and biological conditions. Due to the inherent brittleness of silk fibroin (SF), polyurethane fiber (PUF) was used to modify SF containing actinomycin X2 (Ac.X2) to prepare silk fibroin@actinomycin X2/polyurethane fiber (ASF/PUF) blend membranes. The ASF/PUF blend membrane was developed by solution casting method. Incorporation of PUF improved the flexibility of material and introduction of Ac.X2 has increased antibacterial activity of materials. Excellent mechanical properties (tensile strength up to 25.7 MPa and elongation at break up to 946.5 %) of 50 % SF+50 % PUF blend membrane were proved by tensile testing machine. FT-IR spectra, TGA, contact angle and DMA were tested to prove the blend membrane's physico-chemical characteristics. ASF/PUF blend membrane displayed satisfactory antibacterial activity against S. aureus, and the cytotoxicity tests showed that the blend membrane has better biosafety compared to directly applied Ac.X2 in soluble form. These results suggest that the modification of SF through PUF for development of flexible antibacterial membranes has great potential application value in the field of silk-like material fabrication.  相似文献   
2.
Seed storage proteins in wheat endosperm, particularly high-molecular-weight glutenin subunits (HMW-GS), are primary determinants of dough properties, and affect both end-use quality and grain utilization of wheat (Triticum aestivum L). In order to investigate the interactive effects between the transgenically overexpressed 1Ax1 subunit with different HMW-GS on dough quality traits, we developed a set of 8 introgression lines (ILs) overexpressing the transgenic HMW-glutenin subunit 1Ax1 by introgression of this transgene from transgenic line B102-1-2/1 into an elite Chinese wheat variety Chuanmai107 (C107), using conventional crossing and backcrossing breeding technique. The donor C107 strain lacks 1Ax1 but contains the HMW-GS pairs 1Dx2+1Dy12 and 1Bx7+1By9. The resultant ILs showed robust and stable expression of 1Ax1 even after five generations of self-pollination, and crossing/backcrossing three times. In addition, overexpression of 1Ax1 was compensated by the endogenous gluten proteins. All ILs exhibited superior agronomic performance when compared to the transgenic parent line, B102-1-2/1. Mixograph results demonstrated that overexpressed 1Ax1 significantly improved dough strength, resistance to extension and over-mixing tolerance, in the targeted wheat cultivar C107. Further, comparisons among the ILs showed the interactive effects of endogenous subunits on dough properties when 1Ax1 was overexpressed: subunit pair 17+18 contributed to increased over-mixing tolerance of the dough; expression of the Glu-D1 allele maintained an appropriate balance between x-type and y-type subunits and thereby improved dough quality. It is consistent with ILs C4 (HMW-GS are 1, 17+18, 2+12) had the highest gluten index and Zeleny sedimentation value. This study demonstrates that wheat quality could be improved by using transgenic wheat overexpressing HMW-GS and the feasibility of using such transgenic lines in wheat quality breeding programs.  相似文献   
3.
Wu  Xinghan  Liu  Chuanliang  Li  Zihaoran  Gai  Chengcheng  Ding  Dejun  Chen  Weijuan  Hao  Fengyun  Li  Wentong 《Molecular and cellular biochemistry》2020,473(1-2):217-228
Molecular and Cellular Biochemistry - Ferroptosis is a newly discovered form of regulated cell death and characterized by an iron-dependent accumulation of lethal lipid reactive oxygen species...  相似文献   
4.
5.
Analyses of genome variations with high‐throughput assays have improved our understanding of genetic basis of crop domestication and identified the selected genome regions, but little is known about that of modern breeding, which has limited the usefulness of massive elite cultivars in further breeding. Here we deploy pedigree‐based analysis of an elite rice, Huanghuazhan, to exploit key genome regions during its breeding. The cultivars in the pedigree were resequenced with 7.6× depth on average, and 2.1 million high‐quality single nucleotide polymorphisms (SNPs) were obtained. Tracing the derivation of genome blocks with pedigree and information on SNPs revealed the chromosomal recombination during breeding, which showed that 26.22% of Huanghuazhan genome are strictly conserved key regions. These major effect regions were further supported by a QTL mapping of 260 recombinant inbred lines derived from the cross of Huanghuazhan and a very dissimilar cultivar, Shuanggui 36, and by the genome profile of eight cultivars and 36 elite lines derived from Huanghuazhan. Hitting these regions with the cloned genes revealed they include numbers of key genes, which were then applied to demonstrate how Huanghuazhan were bred after 30 years of effort and to dissect the deficiency of artificial selection. We concluded the regions are helpful to the further breeding based on this pedigree and performing breeding by design. Our study provides genetic dissection of modern rice breeding and sheds new light on how to perform genomewide breeding by design.  相似文献   
6.
Obesity is documented to be a state of chronic mild inflammation associated with increased macrophage infiltration into adipose tissue and liver and skeletal muscle. As a pleiotropic inflammatory mediator, macrophage migration inhibitory factor (MIF) is associated with metabolic disease, so MIF may signal molecular links between adipocytes and myocytes. MIF expression was modified during myoblast differentiation, but the role of MIF during this process is unclear. C2C12 cells were transfected with MIF to investigate their role during differentiation. MIF expression attenuated C2C12 differentiation. It did not change proliferation, but downregulated cyclin D1 and CDK4, causing cell accumulation in the G1 phase. p21 protein was increased significantly and MyoD, MyoG, and p21 mRNA also increased significantly in the C2C12 cells treated with ISO-1, suggesting that inhibition of MIF promotes differentiation. MIF inhibits the myoblast differentiation by affecting the cell cycle progression, but does not affect proliferation.  相似文献   
7.
Yun  Jianmin  Zhao  Fengqin  Zhang  Wenwei  Yan  Haijiao  Zhao  Fengyun  Ai  Duiyuan 《Annals of microbiology》2019,69(3):279-289

This study reveals the microbial community succession and diversity during the whole solid-fermentation processes of naturally fermented Liangzhou fumigated vinegar (LZFV). Dynamics and diversity of microbial community succession in “Daqu” starter and other fermentation stages (starch saccharification, alcoholic fermentation, and acetic acid fermentation) were monitored using a metagenomic approach involving high-throughput sequencing. Meanwhile, dynamic changes of characteristic flavor compounds of vinegar were determined by gas chromatograph (GC) analysis. The result showed that the microbiota composition exhibited rich diversity. Twenty-five bacterial and 18 fungal genera were found in the whole fermentation process where Lactobacillus, Acetobacter, Aspergillus, Saccharomyces, and Alternaria were the predominant microorganisms. Alpha diversity metrics showed that bacterial diversity in Daqu was greater than that in AF and AAF. By contrast, fungal diversity increased from Daqu to AF and decreased in the initial stage (5–8 days) of AAF then remained relatively steady. Hence, these results could help understand dynamics of microbial community succession in continuous fermentation of traditional Chinese vinegars. The LZFV fermentation is a continuous process with spontaneous growth that affects the dynamics of microbial communities. Continuous changes of micro-environment conditions in substrate affect the diversity and structure of microbiota. Microbial growth and metabolism were closely related to the changes in the physicochemical characteristics of the cultures. The microbial flora composition showed rich diversity, and with the increase in brewing time and the change in micro-ecological environmental conditions; the microbial community showed a complex dynamic changes.

  相似文献   
8.
为探究羊肚菌Morchella与不同土壤生长环境及土壤理化因子的关系,以吉林省辽源市的野生和栽培两种生境为样地,采集羊肚菌根际土壤样品为材料,通过Illumina MiSeq高通量测序技术,对羊肚菌土壤真菌群落结构和多样性进行研究,同时分析土壤理化因子对其真菌群落多样性及优势菌属的影响.通过Alpha多样性分析发现:与...  相似文献   
9.
The cytochrome P-450 eicosanoid 20-hydroxyeicosatetraenoic acid (20-HETE) is a potent vasoconstrictor that is implicated in the regulation of blood pressure. The identification of selective inhibitors of renal 20-HETE formation for use in vivo would facilitate studies to determine the systemic effects of this eicosanoid. We characterized the acetylenic fatty acid sodium 10-undecynyl sulfate (10-SUYS) as a potent and selective mechanism-based inhibitor of renal 20-HETE formation. A single dose of 10-SUYS caused an acute reduction in mean arterial blood pressure in 8-wk-old spontaneously hypertensive rats. The decrease in mean arterial pressure was maximal 6 h after 10-SUYS treatment (17.9 +/- 3.2 mmHg; P < 0.05), and blood pressure returned to baseline levels within 24 h after treatment. Treatment with 10-SUYS was associated with a decrease in urinary 20-HETE formation in vivo and attenuation of the vasoconstrictor response of renal interlobar arteries to ANG II in vitro. These results provide further evidence that 20-HETE plays an important role in the regulation of blood pressure in the spontaneously hypertensive rat.  相似文献   
10.
We demonstrated earlier that the heme in cytochrome P450 enzymes of the CYP4A family is covalently attached to the protein through an I-helix glutamic acid residue [Hoch, U., and Ortiz de Montellano, P. R. (2001) J. Biol. Chem. 276, 11339-11346]. As the critical glutamic acid residue is conserved in many members of the CYP4F class of cytochrome P450 enzymes, we investigated covalent heme binding in this family of enzymes. Chromatographic analysis indicates that the heme is covalently bound in CYP4F1 and CYP4F4, which have the required glutamic acid residue, but not in CYP4F5 and CYP4F6, which do not. Catalytic turnover of CYP4F4 with NADPH-cytochrome P450 reductase shows that the heme is covalently bound through an autocatalytic process. Analysis of the prosthetic group in the CYP4F5 G330E mutant, into which the glutamic acid has been reintroduced, shows that the heme is partially covalently bound and partially converted to noncovalently bound 5-hydroxymethylheme. The modified heme presumably arises by trapping of a 5-methyl carbocation intermediate by a water molecule. CYP4F proteins thus autocatalytically bind their heme groups covalently in a process that requires a glutamic acid both to generate a reactive (cationic) form of the heme methyl and to trap it to give the ester bond.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号