首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   4篇
  国内免费   8篇
  2022年   1篇
  2021年   2篇
  2019年   1篇
  2017年   1篇
  2015年   3篇
  2014年   1篇
  2011年   5篇
  2008年   2篇
  2005年   2篇
  2004年   1篇
  1998年   1篇
  1997年   1篇
  1996年   3篇
排序方式: 共有24条查询结果,搜索用时 15 毫秒
1.
Yao  Chentao  Zhang  Fengwen  Sun  Xiao  Shang  Dianlong  He  Falin  Li  Xiangdong  Zhang  Jiwang  Jiang  Xingyin 《Journal of Plant Growth Regulation》2019,38(4):1300-1313

The objective of this study was to evaluate the ability of the phytohormone S-abscisic acid (S-ABA) to protect maize seedlings grown under drought stress and to measure their increased drought tolerance. The maize hybrids ‘Zhengdan 958’ (ZD958; drought tolerant) and ‘Xundan 20’ (XD20; drought sensitive) were treated with nutrient solutions of different concentrations (1, 2, 4, 8, and 10 mg/kg) of S-ABA under polyethylene glycol (PEG, 15% w/v, MW 6000) simulated drought stress. Optimal concentrations of S-ABA were designed to be sprayed onto the leaves of seedlings, and their effect on endogenous ABA, malondialdehyde (MDA), osmotic substances, antioxidant enzyme activities, and Asr1 gene expression in seedlings were studied. Results indicated that, under drought stress, S-ABA treatment significantly improved maize seed germination rate (GR), germination energy (GE), and seedling biomass (p < 0.05). After spraying 4 mg/kg S-ABA onto leaves, the endogenous hormone ABA, osmotic substances, antioxidant enzyme activities, and expressive quantity of the Asr1 gene were extended and MDA content dropped significantly (p < 0.05). Moreover, ZD 958 endogenous ABA content, osmotic substances content, antioxidant enzyme activity and Asr1 gene expressive quantity were higher than that of XD 20 (p < 0.05). In conclusion, S-ABA treatment increased the content of endogenous ABA, induced an increase in antioxidant enzyme activity and Asr1 gene expression level, reduced the oxidative damage caused by drought to maize leaves, and improved the adaptability of maize seedlings to withstand drought stress. The promoting effect of S-ABA on the drought-tolerant variety ZD 958 was more obvious (p < 0.05). These results serve as a reference for the use of S-ABA in mitigating drought stress in maize.

  相似文献   
2.
Ligupurpuroside A is a glycoside extracted from Ku-Ding tea. As extracts from Ku-Ding tea exhibit anti-inflammatory property, we hypothesize that Ligupurpuroside A may be an active compound which inhibits trypsin activity during the anti-inflammatory process. The mechanism and nature of inhibition of trypsin by Ligupurpuroside A have been studied by multi-spectroscopic method, enzyme-activity assay and molecular docking. Enzyme activity assay reveals that Ligupurpuroside A significantly inhibits the activity of trypsin through a competitive manner with an IC50 value of 3.08 × 10?3 mol L?1. Fluorescence titration together with thermodynamic analysis indicate that a Ligupurpuroside A-trypsin complex is formed, and that hydrophobic force and hydrogen bonding are the main forces stabilizing the complex. UV-vis absorption, synchronous fluorescence and circular dichroism spectra show that the interaction between Ligupurpuroside A and trypsin induces conformational changes of trypsin with a decrease in the contents of α-helix and β-sheet. Finally, molecular docking further suggests that Ligupurpuroside A molecule binds within the active pocket of trypsin via hydrophobic force and hydrogen bond. Results from this study of the interaction of trypsin with its natural inhibitor should be useful to minimize the antinutritional effects and make full use of tea extracts in the food industry, and be also helpful to the design of the drugs for the diseases related to overexpression of trypsin.  相似文献   
3.
Long interspersed element type 1 (LINE-1, also L1 for short) is the only autonomously transposable element in the human genome. Its insertion into a new genomic site may disrupt the function of genes, potentially causing genetic diseases. Cells have thus evolved a battery of mechanisms to tightly control LINE-1 activity. Here, we report that a cellular antiviral protein, myxovirus resistance protein B (MxB), restricts the mobilization of LINE-1. This function of MxB requires the nuclear localization signal located at its N-terminus, its GTPase activity and its ability to form oligomers. We further found that MxB associates with LINE-1 protein ORF1p and promotes sequestration of ORF1p to G3BP1-containing cytoplasmic granules. Since knockdown of stress granule marker proteins G3BP1 or TIA1 abolishes MxB inhibition of LINE-1, we conclude that MxB engages stress granule components to effectively sequester LINE-1 proteins within the cytoplasmic granules, thus hindering LINE-1 from accessing the nucleus to complete retrotransposition. Thus, MxB protein provides one mechanism for cells to control the mobility of retroelements.  相似文献   
4.
以纤维素为原料,以自制的不同硅铝比ZSM-5(38)/Al-MCM-41微-介孔复合分子筛为催化剂,在固定床反应器上进行了催化热解实验。采用XRD表征分子筛,采用GC-MS分析生物油成分,考查了催化剂的改变对生物质热解产物及生物油成分的影响。实验结果表明:添加催化剂后,生物油产率降低,且其含水率也有所增加。与未添加催化剂相比,生物油中D L-2,3-丁二醇有明显提高。其中,ZSM-5(38)/Al-MCM-41(20)最有利于苯酚、愈创木酚(2-甲氧基-苯酚)的生成。此外,这几种催化剂均有利于小分子化合物的生成,其中,ZSM-5(38)有利于C4~C5化合物的生成,微-介孔复合分子筛则有利于C6~C8化合物的生成。  相似文献   
5.
The mitochondrial DNA m.3243A > G mutation is well-known to cause a variety of clinical phenotypes, including diabetes, deafness, and osteoporosis. Here, we report isolation and expansion of urine-derived stem cells (USCs) from patients carrying the m.3243A > G mutation, which demonstrate bimodal heteroplasmy. USCs with high levels of m.3243A > G mutation displayed abnormal mitochondrial morphology and function, as well as elevated ATF5-dependent mitochondrial unfolded protein response (UPRmt), together with reduced Wnt/β-catenin signaling and osteogenic potentials. Knockdown of ATF5 in mutant USCs suppressed UPRmt, improved mitochondrial function, restored expression of GSK3B and WNT7B, and rescued osteogenic potentials. These results suggest that ATF5-dependent UPRmt could be a core disease mechanism underlying mitochondrial dysfunction and osteoporosis related to the m.3243A > G mutation, and therefore could be a novel putative therapeutic target for this genetic disorder.Subject terms: Mechanisms of disease, Diabetes  相似文献   
6.
7.
在链霉菌中表达透明颤菌血红蛋白需要异源启动子   总被引:4,自引:0,他引:4  
构建了质粒pIJ4083Mpro、pIJ4083\|pro\,pWLD8和pFW3。在浅青紫链霉菌TK24中,启动子探针质粒pIJ4083上的邻苯二酚双加氧酶基因(xylE)不能被透明颤菌血红蛋白基因(vgb)的启动子带动转录,表明vgb启动子在链霉菌中无作用。TK24中,pWLD8和pFW3均能表达透明颤菌血红蛋白(VHb),pWLD8上可能是由Plac带动vgb的表达;pFW3上vgb基因去掉了非必要部分,克隆在PCR扩增得到的glnA启动子下游,两者连成嵌合基因。  相似文献   
8.
熔盐热裂解生物质制生物油   总被引:1,自引:1,他引:1  
为探讨热裂解条件对熔盐中生物质热裂解制生物油的影响,在自行设计的反应器中,以摩尔比为7∶6的ZnCl2-KCl混合熔盐作为热裂解的热载体、催化剂和分散剂,考察了500 ℃时添加的金属盐和生物质原料的影响,并采用气相色谱-质谱仪 (GC-MS) 对生物油的主要组成进行了分析。结果表明:添加的金属盐显著影响热裂解产物得率,稀土金属盐显著提高生物油得率,降低生物油的含水率,添加摩尔分数为5.0% LaCl3时生物油得率为32.0%,含水率为61.5%;水稻秸秆热裂解的生物油和焦炭得率较高,稻壳热裂解的气体得率较高;金属添加盐对生物油组成有较强的选择性,LiCl和FeCl2对生物质向小分子裂解具有较强的催化作用,而CrCl3、CaCl2和LaCl3对生物油二次裂解具有抑制作用。研究结果为熔盐热裂解生物质制生物油提供了参考。  相似文献   
9.
以氨为氮源培养头状轮生链霉菌(Streptoverticillium caespitosus)时粗抽提液中谷氨酰胺合成酶(glutamine synthetase, GS)对热稳定,以硝酸盐为氮源时GS对热不稳定。以硫酸链霉素沉淀、热处理、聚乙烯亚胺(PEI)沉淀和Affini-gel Blue柱纯化了前者,以DE-52柱和Affini-gel Blue柱纯化了后者,纯化后两个酶分子量同为550000,亚基分子量同为56000,热稳定性相同,转谷氨酰基酶活力的最适pH均在6.4~6.7之间,对谷氨酰胺的K_m值同为11.1mmol/L,寸羟胺的K_m值同为1.6mmol/L,所以认为此菌中总是同一GS表现出活力。  相似文献   
10.
Lentiviral Nef proteins have multiple functions and are important for viral pathogenesis. Recently, Nef proteins from many simian immunodefiency viruses were shown to antagonize a cellular antiviral protein, named Tetherin, that blocks release of viral particles from the cell surface. However, the mechanism by which Nef antagonizes Tetherin is unknown. Here, using related Nef proteins that differ in their ability to antagonize Tetherin, we identify three amino-acids in the C-terminal domain of Nef that are critical specifically for its ability to antagonize Tetherin. Additionally, divergent Nef proteins bind to the AP-2 clathrin adaptor complex, and we show that residues important for this interaction are required for Tetherin antagonism, downregulation of Tetherin from the cell surface and removal of Tetherin from sites of particle assembly. Accordingly, depletion of AP-2 using RNA interference impairs the ability of Nef to antagonize Tetherin, demonstrating that AP-2 recruitment is required for Nef proteins to counteract this antiviral protein.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号