首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   52篇
  免费   18篇
  2023年   1篇
  2021年   1篇
  2020年   2篇
  2019年   3篇
  2018年   4篇
  2017年   2篇
  2016年   6篇
  2015年   3篇
  2014年   3篇
  2013年   5篇
  2012年   2篇
  2011年   4篇
  2010年   2篇
  2009年   1篇
  2008年   1篇
  2006年   5篇
  2005年   5篇
  2004年   6篇
  2003年   8篇
  2002年   1篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1966年   1篇
排序方式: 共有70条查询结果,搜索用时 15 毫秒
1.
Marine algae are one of the most important sources of high-value compounds such as polar lipids, omega-3 fatty acids, photosynthetic pigments, or secondary metabolites with interesting features for different niche markets. Acetabularia acetabulum is a macroscopic green single-celled alga, with a single nucleus hosted in the rhizoid. This alga is one of the most studied dasycladalean species and represents an important model system in cell biology studies. However, its lipidome and pigment profile have been overlooked. Total lipid extracts were analyzed using hydrophilic interaction liquid chromatography-high resolution mass spectrometry (HILIC-HRMS), tandem mass spectrometry (MS/MS), and high-performance liquid chromatography (HPLC). The antioxidant capacity of lipid extracts was tested using DPPH and ABTS assays. Lipidomics identified 16 polar lipid classes, corresponding to glycolipids, betaine lipids, phospholipids, and sphingolipids, with a total of 191 lipid species, some of them recognized by their bioactivities. The most abundant polar lipids were glycolipids. Lipid classes less studied in algae were identified, such as diacylglyceryl-carboxyhydroxymethylcholine (DGCC) or hexosylceramide (HexCer). The pigment profile of A. acetabulum comprised carotenoids (17.19%), namely cis-neoxanthin, violaxanthin, lutein and β,β-carotene, and chlorophylls a and b (82.81%). A. acetabulum lipid extracts showed high antioxidant activity promoting a 50% inhibition (IC50) with concentrations of 57.91 ± 1.20 μg · mL−1 (438.18 ± 8.95 μmol Trolox · g−1 lipid) in DPPH and 20.55 ± 0.60 μg · mL−1 in ABTS assays (918.56 ± 27.55 μmol Trolox · g−1 lipid). This study demonstrates the potential of A. acetabulum as a source of natural bioactive molecules and antioxidant compounds.  相似文献   
2.
Climate changes during the Quaternary had important effects on the evolution of European plant species. The distribution of genetic variability in rosemary, a strictly Mediterranean species of reputed Plio‐Quaternary origin for which the diversification centre is hypothesized to be located in the western part of the Mediterranean basin, was investigated across the species range by using plastid microsatellites [plastid simple sequence repeat (cpSSR)] markers. Seven out of the 17 primer pairs screened were polymorphic, with up to four alleles, yielding a total of 17 size variants combined into ten haplotypes. A permutation test to investigate for geographical structure showed no significant differences between RST and GST, indicating that the species lacks geographical structure. Low correlation between genetic and geographical distances was shown by the Mantel test. Bayesian analysis identified two coancestry groups of populations. The distribution of genetic diversity supports the hypothesized origin in the western Mediterranean basin, and with the demographic expansion test indicates three different routes of migration: a northern route expanding along the northern side of the Mediterranean and two southern routes, one from west to east through North Africa and reaching Cyrenaica, and a second to the south‐west of the Iberian Peninsula, from where it came back to the south–central areas. © 2013 The Linnean Society of London, Botanical Journal of the Linnean Society, 2013 , 171 , 700–712.  相似文献   
3.
If you were asked to speculate about the form extra-terrestrial life on Mars might take, which geomicrobial phenomenon might you select as a model system, assuming that life on Mars would be ‘primitive’? Give your reasons.  相似文献   
4.
5.
The use of surfactants as a method for solubilization and removal of heavy metal contamination from soil has been reported before. Biosurfactants produced by some microorganisms are able to modify the surface of various metals and aggregate on interphases favoring the metal separation process from contaminated environments. We evaluated the feasibility of enhancing the removal of metal ions from mineral waste/contaminated soils using alternate cycles of treatment with rhamnolipid biosurfactants and bioleaching with a mixed bacterial culture of Acidithiobacillus thiooxidans and Acidithiobacillus ferrooxidans. Bioleaching alone removed 50% Zn and 19% Fe. When rhamnolipids were used at low concentration (0.4 mg/mL), 11% Fe and 25% Zn were removed, while at 1 mg/mL 19% Fe and 52% Zn removal were achieved. When using a cyclic treatment combining bioleaching and biosurfactants, metal removal reached up to 36% for Fe and 63% to 70% for Zn.  相似文献   
6.
Large vertebrates are strong interactors in food webs, yet they were lost from most ecosystems after the dispersal of modern humans from Africa and Eurasia. We call for restoration of missing ecological functions and evolutionary potential of lost North American megafauna using extant conspecifics and related taxa. We refer to this restoration as Pleistocene rewilding; it is conceived as carefully managed ecosystem manipulations whereby costs and benefits are objectively addressed on a case-by-case and locality-by-locality basis. Pleistocene rewilding would deliberately promote large, long-lived species over pest and weed assemblages, facilitate the persistence and ecological effectiveness of megafauna on a global scale, and broaden the underlying premise of conservation from managing extinction to encompass restoring ecological and evolutionary processes. Pleistocene rewilding can begin immediately with species such as Bolson tortoises and feral horses and continue through the coming decades with elephants and Holarctic lions. Our exemplar taxa would contribute biological, economic, and cultural benefits to North America. Owners of large tracts of private land in the central and western United States could be the first to implement this restoration. Risks of Pleistocene rewilding include the possibility of altered disease ecology and associated human health implications, as well as unexpected ecological and sociopolitical consequences of reintroductions. Establishment of programs to monitor suites of species interactions and their consequences for biodiversity and ecosystem health will be a significant challenge. Secure fencing would be a major economic cost, and social challenges will include acceptance of predation as an overriding natural process and the incorporation of pre-Columbian ecological frameworks into conservation strategies.  相似文献   
7.
We performed an epidemiological study on Salmonella isolated from raw plant-based feed in Spanish mills. Overall, 32 different Salmonella serovars were detected. Despite its rare occurrence in humans and animals, Salmonella enterica serovar California was found to be the predominant serovar in Spanish feed mills. Different typing techniques showed that isolates of this serovar were genetically closely related, and comparative genomic hybridization using microarray technology revealed 23 S. enterica serovar Typhimurium LT2 gene clusters that are absent from serovar California.  相似文献   
8.
The mutual effects of Acidiphilium cryptum, nine ligands and dissolved iron on jarosite dissolution were studied in a 23 full factorial experiment. Ethylenediaminetetraacetic acid (EDTA), nitrilotriacetic acid (NTA) and oxalic acid were able to dissolve jarosite chemically, but bacterial action enhanced this dissolution; from 88 ± 1, 46 ± 0 and 36 ± 0 µmol/L d to 129 ± 3, 177 ± 5 and 106 ± 14 µmol/L d, respectively. Oxalate and NTA exhibited a synergistic effect with dissolved iron and bacteria that may be explained by a model in which iron complexes behave as redox mediators in the microbial respiration in which jarosite, a solid substrate, serves as terminal electron acceptor.  相似文献   
9.
The American mink’s relationship to the weasels in Mustela has been uncertain. Karyological, morphological, and phylogenetic comparisons to Eurasian Mustela support placing the mink outside the genus as Neovison vison. However, genetic comparisons that incorporate other endemic American Mustela suggest the interpretation of N. vison’s position to Mustela has been handicapped by biased geographic sampling. Here, we analyzed mitochondrial cytochrome-b from all weasels endemic to the Americas, including two poorly known South American species (M. felipei, M. africana), weasels native to North America (M. vison, M. frenata, M. nigripes), Mustela migrant to North America (M. erminea, M. nivalis), palearctic Mustela, and other American members of Mustelidae. Bayesian and likelihood inference methods were used to construct a phylogeny of Mustela, and relaxed Bayesian phylogenetic techniques estimated ages of divergence within the genus using priors calibrated by fossil ages. Our analyses show that the American mink and the smaller Mustela endemic to the Americas represent a distinct phylogenetic heritage apart from their Eurasian cousins, and biogeographic barriers like the Bering and Panamanian land bridges have influenced the evolutionary history of Mustela in the Americas.  相似文献   
10.
The high concentration of molecular oxygen in Earth??s atmosphere is arguably the most conspicuous and geologically important signature of life. Earth??s early atmosphere lacked oxygen; accumulation began after the evolution of oxygenic photosynthesis in cyanobacteria around 3.0?C2.5 billion years ago (Gya). Concentrations of oxygen have since varied, first reaching near-modern values ~600 million years ago (Mya). These fluctuations have been hypothesized to constrain many biological patterns, among them the evolution of body size. Here, we review the state of knowledge relating oxygen availability to body size. Laboratory studies increasingly illuminate the mechanisms by which organisms can adapt physiologically to the variation in oxygen availability, but the extent to which these findings can be extrapolated to evolutionary timescales remains poorly understood. Experiments confirm that animal size is limited by experimental hypoxia, but show that plant vegetative growth is enhanced due to reduced photorespiration at lower O2:CO2. Field studies of size distributions across extant higher taxa and individual species in the modern provide qualitative support for a correlation between animal and protist size and oxygen availability, but few allow prediction of maximum or mean size from oxygen concentrations in unstudied regions. There is qualitative support for a link between oxygen availability and body size from the fossil record of protists and animals, but there have been few quantitative analyses confirming or refuting this impression. As oxygen transport limits the thickness or volume-to-surface area ratio??rather than mass or volume??predictions of maximum possible size cannot be constructed simply from metabolic rate and oxygen availability. Thus, it remains difficult to confirm that the largest representatives of fossil or living taxa are limited by oxygen transport rather than other factors. Despite the challenges of integrating findings from experiments on model organisms, comparative observations across living species, and fossil specimens spanning millions to billions of years, numerous tractable avenues of research could greatly improve quantitative constraints on the role of oxygen in the macroevolutionary history of organismal size.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号