首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  免费   4篇
  2022年   1篇
  2021年   1篇
  2020年   2篇
  2019年   3篇
  2018年   1篇
  2016年   2篇
  2015年   2篇
  2014年   3篇
  2013年   2篇
  2012年   1篇
  2011年   1篇
  2008年   1篇
  2007年   2篇
  2006年   2篇
  1996年   1篇
  1949年   1篇
排序方式: 共有26条查询结果,搜索用时 437 毫秒
1.
An increasing number of studies have reported on forest declines and vegetation shifts triggered by drought. In the Swiss Rhone valley (Valais), one of the driest inner‐Alpine regions, the species composition in low elevation forests is changing: The sub‐boreal Scots pine (Pinus sylvestris L.) dominating the dry forests is showing high mortality rates. Concurrently the sub‐Mediterranean pubescent oak (Quercus pubescens Willd.) has locally increased in abundance. However, it remains unclear whether this local change in species composition is part of a larger‐scale vegetation shift. To study variability in mortality and regeneration in these dry forests we analysed data from the Swiss national forest inventory (NFI) on a regular grid between 1983 and 2003, and combined it with annual mortality data from a monitoring site. Pine mortality was found to be highest at low elevation (below 1000 m a.s.l.). Annual variation in pine mortality was correlated with a drought index computed for the summer months prior to observed tree death. A generalized linear mixed‐effects model indicated for the NFI data increased pine mortality on dryer sites with high stand competition, particularly for small‐diameter trees. Pine regeneration was low in comparison to its occurrence in the overstorey, whereas oak regeneration was comparably abundant. Although both species regenerated well at dry sites, pine regeneration was favoured at cooler sites at higher altitude and oak regeneration was more frequent at warmer sites, indicating a higher adaptation potential of oaks under future warming. Our results thus suggest that an extended shift in species composition is actually occurring in the pine forests in the Valais. The main driving factors are found to be climatic variability, particularly drought, and variability in stand structure and topography. Thus, pine forests at low elevations are developing into oak forests with unknown consequences for these ecosystems and their goods and services.  相似文献   
2.
It has long been known that human keratinocytes are a potent source of the proinflammatory cytokines proIL-1alpha and -1beta[1], which are activated and released in response to UV irradiation [2]. However, the intracellular pathways, which regulate maturation and secretion of IL-1 in keratinocytes, are unknown. Here we show that the UVB-mediated enhancement of cytoplasmic Ca(2+) is required for activation of the IL-1beta-converting enzyme caspase-1 by the inflammasome, a multiprotein innate immune complex [3, 4]. Caspase-1 in turn activates proIL-1beta, and keratinocytes secrete the cytokine as well as inflammasome components. These results demonstrate the presence of a proIL-1beta-processing inflammasome in nonprofessional immune cells and the necessity of inflammasome components for the UVB-induced secretion of IL-1beta. This supports the concept that keratinocytes are important immuno-competent cells under physiological and pathological conditions [5].  相似文献   
3.
Characterizing hybrid zones and their dynamics is a central goal in evolutionary biology, but this is particularly challenging for morphologically cryptic species. The lack of conspicuous divergence between parental types means intermediate hybrid forms often go undetected. We aimed to detect and characterize a suspected hybrid zone between a pair of morphologically cryptic lineages of the freshwater snail, Radix. We sampled Radix from across a contact zone between two mitochondrial lineages (Radix balthica and an undescribed lineage termed ‘MOTU3’) and detected admixture between two nuclear genotype clusters, which were significantly but not categorically associated with the mitochondrial lineages. Using a model selection approach, we show that the admixture cline is best explained by an interaction between precipitation and temperature gradients over the area, rather than geographic distance. We thus hypothesize that the correlation with climatic gradients suggests environmental selection has played a role in maintaining the hybrid zone. In a 2050 climate change scenario, we furthermore predict an expansion of one of the nuclear clusters and a widening of the hybrid zone as the climate warms and dries.  相似文献   
4.
Sponge communities on the Antarctic continental shelf currently represent one of the most extensive sponge grounds in the world, and all sponge classes are known to occur in the Southern Ocean. Main objectives of this study conducted at the tip of the Antarctic Peninsula were (1) to identify all sampled sponges and (2) to investigate whether the species composition and species richness of Southern Ocean sponge communities in the area of the Antarctic Peninsula are significantly influenced by environmental variables. The studied material originated from 25 AGT catches and was sampled during the expedition ANT-XXIX/3 of RV Polarstern. Samples were collected in three large-scale areas in the vicinity of the Antarctic Peninsula: Bransfield Strait, Drake Passage and Weddell Sea. The following six environmental variables were measured from bottom water samples (except for sea-ice cover): depth (m), light transmission (%), oxygen (µmol/kg), salinity, sea-ice cover (%) and temperature (°C). Two hundred and sixty-three sponge samples were analyzed, and 81 species of 33 genera from all Porifera classes (Calcarea, Demospongiae, Hexactinellida and Homoscleromorpha) were identified. Total numbers of sponge species per sample station ranged from 1 to 29. A detrended correspondence analysis and a backward-stepwise model selection were performed to check whether species composition and richness were significantly influenced by environmental variables. The analyses revealed that none of the measured environmental variables significantly influenced species composition but that species richness was significantly influenced by (1) temperature and (2) the combination of temperature and depth. Results of this study are of crucial importance for development, performance and assessment of future protection strategies in case of ongoing climatic changes at the Antarctic Peninsula.  相似文献   
5.
6.
Replicated ecological gradients are prime systems to study processes of molecular evolution underlying ecological divergence. Here, we investigated the repeated adaptation of the neotropical fish Poecilia mexicana to habitats containing toxic hydrogen sulphide (H2S) and compared two population pairs of sulphide‐adapted and ancestral fish by sequencing population pools of >200 individuals (Pool‐Seq). We inferred the evolutionary processes shaping divergence and tested the hypothesis of increase of parallelism from SNPs to molecular pathways. Coalescence analyses showed that the divergence occurred in the face of substantial bidirectional gene flow. Population divergence involved many short, widely dispersed regions across the genome. Analyses of allele frequency spectra suggest that differentiation at most loci was driven by divergent selection, followed by a selection‐mediated reduction of gene flow. Reconstructing allelic state changes suggested that selection acted mainly upon de novo mutations in the sulphide‐adapted populations. Using a corrected Jaccard index to quantify parallel evolution, we found a negligible proportion of statistically significant parallel evolution of Jcorr = 0.0032 at the level of SNPs, divergent genome regions (Jcorr = 0.0061) and genes therein (Jcorr = 0.0091). At the level of metabolic pathways, the overlap was Jcorr = 0.2545, indicating increasing parallelism with increasing level of biological integration. The majority of pathways contained positively selected genes in both sulphide populations. Hence, adaptation to sulphidic habitats necessitated adjustments throughout the genome. The largely unique evolutionary trajectories may be explained by a high proportion of de novo mutations driving the divergence. Our findings favour Gould's view that evolution is often the unrepeatable result of stochastic events with highly contingent effects.  相似文献   
7.
Variation in gene expression leads to phenotypic diversity and plays a central role in caste differentiation of eusocial insect species. In social Hymenoptera, females with the same genetic background can develop into queens or workers, which are characterized by divergent morphologies, behaviours and lifespan. Moreover, many social insects exhibit behaviourally distinct worker castes, such as brood‐tenders and foragers. Researchers have just started to explore which genes are differentially expressed to achieve this remarkable phenotypic plasticity. Although the queen is normally the only reproductive individual in the nest, following her removal, young brood‐tending workers often develop ovaries and start to reproduce. Here, we make use of this ability in the ant Temnothorax longispinosus and compare gene expression patterns in the queens and three worker castes along a reproductive gradient. We found the largest expression differences between the queen and the worker castes (~2500 genes) and the smallest differences between infertile brood‐tenders and foragers (~300 genes). The expression profile of fertile workers is more worker‐like, but to a certain extent intermediate between the queen and the infertile worker castes. In contrast to the queen, a high number of differentially expressed genes in the worker castes are of unknown function, pointing to the derived status of hymenopteran workers within insects.  相似文献   
8.
The gradual heterogeneity of climatic factors poses varying selection pressures across geographic distances that leave signatures of clinal variation in the genome. Separating signatures of clinal adaptation from signatures of other evolutionary forces, such as demographic processes, genetic drift and adaptation, to nonclinal conditions of the immediate local environment is a major challenge. Here, we examine climate adaptation in five natural populations of the harlequin fly Chironomus riparius sampled along a climatic gradient across Europe. Our study integrates experimental data, individual genome resequencing, Pool‐Seq data and population genetic modelling. Common‐garden experiments revealed significantly different population growth rates at test temperatures corresponding to the population origin along the climate gradient, suggesting thermal adaptation on the phenotypic level. Based on a population genomic analysis, we derived empirical estimates of historical demography and migration. We used an FST outlier approach to infer positive selection across the climate gradient, in combination with an environmental association analysis. In total, we identified 162 candidate genes as genomic basis of climate adaptation. Enriched functions among these candidate genes involved the apoptotic process and molecular response to heat, as well as functions identified in studies of climate adaptation in other insects. Our results show that local climate conditions impose strong selection pressures and lead to genomic adaptation despite strong gene flow. Moreover, these results imply that selection to different climatic conditions seems to converge on a functional level, at least between different insect species.  相似文献   
9.
Host-plant finding by foundress queens is an important step in the establishment of ant–plant symbioses and olfactory cues may play a crucial role in the MacarangaCrematogaster ant–plant system for attracting foundresses over longer distances. MicroSPE was used to investigate leaf volatiles of 11 myrmecophytic and non-myrmecophytic Macaranga species. Chemical analysis (GC–MS) yielded a total of 114 compounds comprising a great diversity, including aliphatic compounds, aromatics, mono- and sesquiterpenoids. An analysis of the volatile data using the CNESS distances of the chemical profiles, followed by visualization of the data with non-metric multidimensional scaling (NMDS) showed that even closely related species sharing the same ant partners have clearly different scent patterns. Comparison of spectra of volatile compounds between obligate myrmecophytic Macaranga species and myrmecophilous species that are only facultatively associated with unspecific arboreal ants did not reveal general differences. Choice experiments conducted with foundresses revealed that the ants have the capacity to distinguish between different host species. However, the behavior of the foundresses following surface contact with saplings indicates that other cues, like surface structure, may play a more important role in host-recognition over short distances than volatile compounds. We discuss alternative hypotheses for the possible role of leaf volatiles in the examined Macaranga species as chemical defense against herbivores.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号