首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2045篇
  免费   144篇
  2023年   12篇
  2022年   23篇
  2021年   73篇
  2020年   39篇
  2019年   45篇
  2018年   61篇
  2017年   42篇
  2016年   65篇
  2015年   116篇
  2014年   107篇
  2013年   162篇
  2012年   199篇
  2011年   217篇
  2010年   109篇
  2009年   102篇
  2008年   129篇
  2007年   103篇
  2006年   92篇
  2005年   88篇
  2004年   83篇
  2003年   67篇
  2002年   55篇
  2001年   11篇
  2000年   8篇
  1999年   13篇
  1998年   13篇
  1997年   7篇
  1996年   11篇
  1995年   9篇
  1994年   3篇
  1993年   6篇
  1991年   5篇
  1990年   5篇
  1989年   6篇
  1988年   4篇
  1986年   5篇
  1985年   9篇
  1984年   6篇
  1980年   3篇
  1979年   18篇
  1977年   6篇
  1976年   7篇
  1975年   4篇
  1973年   3篇
  1972年   5篇
  1971年   4篇
  1970年   3篇
  1969年   6篇
  1967年   4篇
  1963年   2篇
排序方式: 共有2189条查询结果,搜索用时 78 毫秒
1.
Structure of the spectrin-actin binding site of erythrocyte protein 4.1   总被引:9,自引:0,他引:9  
The complete primary structure of the functional site of erythrocyte protein 4.1 involved in spectrin-actin associations has been determined. The sequence of this domain, which contains 67 amino acids and has a molecular mass of 8045 daltons, has been obtained by NH2-terminal sequence analysis of an 8-kDa chymotryptic peptide, three endoproteinase lysine C-cleaved peptides and two peptides obtained by Staphylococcus aureus protease V8 cleavage. All peptides including the 8-kDa domain peptide were purified by reverse-phase high performance liquid chromatography. Antibodies against two different synthetic peptides of the 8-kDa domain are able to inhibit the association between protein 4.1, spectrin, and F-actin, corroborating that the 8-kDa domain is responsible for the formation of a ternary complex. A computer search of the 8-kDa sequence with the National Biomedical Research Foundation database did not detect any significant homologies to known sequences. Protein 4.1 is not related to any known proteins and may represent a new protein superfamily.  相似文献   
2.
3.
The phosphorylation of the membrane skeleton components protein 4.1 and protein 4.9 in intact erythrocytes is shown to increase in the presence of either 1 microM 12-O-tetradecanoyl phorbol 13-acetate or 2 mM dibutyryl cAMP. The phosphorylation induced by these protein kinase activators is compared by two-dimensional tryptic peptide mapping. In both proteins, the pattern of peptides phosphorylated in the presence of 12-O-tetradecanoyl phorbol 13-acetate differs from the pattern of peptides phosphorylated in the presence of dibutyryl cAMP. The relative locations of the phosphorylated sites on protein 4.1 have been determined using limited proteolysis by alpha-chymotrypsin.  相似文献   
4.
It has long been debated whether the mind consists of specialized and independently evolving modules, or whether and to what extent a general factor accounts for the variance in performance across different cognitive domains. In this study, we used a hierarchical Bayesian model to re-analyse individual level data collected on seven primate species (chimpanzees, bonobos, orangutans, gorillas, spider monkeys, brown capuchin monkeys and long-tailed macaques) across 17 tasks within four domains (inhibition, memory, transposition and support). Our modelling approach evidenced the existence of both a domain-specific factor and a species factor, each accounting for the same amount (17%) of the observed variance. In contrast, inter-individual differences played a minimal role. These results support the hypothesis that the mind of primates is (at least partially) modular, with domain-specific cognitive skills undergoing different evolutionary pressures in different species in response to specific ecological and social demands.  相似文献   
5.
Peptides produced by mild chymotryptic digestion of human erythrocyte protein 4.1 mimic the ability of intact 4.1 to promote the binding of spectrin to F-actin. This complex-promoting activity was found to reside in an 8-kDa peptide which was fully functional when dissociated from other protein 4.1-derived peptides, indicating that noncovalent complexes of multiple peptides were not essential for activity. The 8-kDa peptide was incorporated into a ternary complex with spectrin and F-actin in approximately stoichiometric amounts. Amino acid composition and two-dimensional peptide mapping show that the 8-kDa active peptide is located within the 10-kDa region of protein 4.1 which contains a cAMP-dependent phosphorylated site.  相似文献   
6.
We have examined the self-association of glycophorin A, the major sialoglycoprotein of the human erythrocyte membrane, using sodium dodecyl sulfate (SDS) polyacrylamide gels and circular dichroism. Pure glycophorin A has a tendency to form multiple bands on SDS gels at positions of higher apparent molecular weight than the PAS 1 and PAS 2 bands previously seen. These high molecular weight bands do not have mobilities corresponding to integral polymers of PAS 1 and PAS 2. Circular dichroism spectra of solutions giving rise to these bands or to PAS 1 and PAS 2 bands alone, indicate that these species all have essentially the same peptide conformation.  相似文献   
7.
Analogues of the human erythroid membrane skeletal component protein 4.1 have been identified in perfused rat tissues and human T and B lymphocyte cell lines. olyclonal antibodies were used which are specific for all domains of protein 4.1, the spectrin-actin-promoting 8-Kd peptide, the membrane-binding 30-Kd domain, and the 50-Kd domain. Antibody reactivity, by Western blotting of tissue homogenates, shows reactivity with proteins varying in molecular weight from 175 Kd to 30 Kd. Further, these protein 4.1 analogues appear to be expressed in a tissue-specific fashion. Of the analogues detected there appear to be at least three classes: analogues containing all erythroid protein 4.1 domains, analogues containing all domains but with modified antigenic epitopes, and analogues containing only some domains. Chemical cleavage at cysteine linkages indicates that in analogues containing the 30-Kd region the location of cysteine is highly conserved. This datum suggests that in nonerythroid 4.1 isoforms of higher molecular weight the additional protein mass is added to the amino terminal end (30 Kd end).  相似文献   
8.
A calmodulin and alpha-subunit binding domain in human erythrocyte spectrin   总被引:3,自引:0,他引:3  
Human erythrocyte spectrin binds calmodulin weakly under native conditions. This binding is enhanced in the presence of urea. The site responsible for this enhanced binding in urea has now been shown to reside in a specific region of the spectrin beta-subunit. Cleavage of spectrin with trypsin, cyanogen bromide or 2-nitro-5-thiocyanobenzoic acid generates fragments of the molecule which retain the ability to bind calmodulin under denaturing conditions. The origin of these fragments, identified by two-dimensional peptide mapping, is the terminal region of the spectrin beta-IV domain. The smallest peptide active in calmodulin binding is a 10 000 Mr fragment generated by cyanogen bromide cleavage. Only the intact 74 000 Mr fragment generated by trypsin (the complete beta-IV domain) retains the capacity to reassociate with the isolated alpha-subunit of spectrin. The position of a putative calmodulin binding site near a site for subunit-subunit association and protein 4.1 and actin binding suggests a possible role in vivo for calmodulin regulation of the spectrin-actin membrane skeleton or for regulation of subunit-subunit associations. This beta-subunit binding site in erythrocyte spectrin is found in a region near the NH2-terminus at a position analogous to the alpha-subunit calmodulin binding site previously identified in a non-erythroid spectrin by ultrastructural studies.  相似文献   
9.
Cytometry and flow cytometry were used to study characteristics of fluorescence of the DNA-DAPI complex in nuclei released from different fresh and formaldehyde-fixed pea ( Pisum sativum L. cv. Lincoln) tissues. The two methods of isolation are compared and discussed as well as their possible use for quantitative analysis of DNA in plant tissues. With fixed tissues it is possible to obtain a number of nuclei sufficient for the flow cytometric analysis, even using small amounts of plant tissue.  相似文献   
10.
T Forte  T L Leto  M Minetti  V T Marchesi 《Biochemistry》1985,24(27):7876-7880
Proteins involved in a structural transition in red blood cell membranes detected at 8 +/- 1.5 degrees C by a stearic acid spin-label have been investigated. Calcium loading of red blood cells with ionophore A23187 caused the disappearance of the 8 degrees C transition. Protein 4.1 appears to be the most susceptible protein to Ca2+ treatment. Antibodies specific for spectrin, band 3 (43K cytoplasmic domain), and protein 4.1 have been utilized as specific probes to modify membrane thermotropic properties. The 8 degrees C transition was eliminated by anti-4.1 protein antibodies but was not modified by the other antibodies. To further characterize the protein(s) involved in the transition, ghosts were subjected to sequential extraction of skeletal proteins. The extraction of band 6, spectrin, and actin did not modify the 8 degrees C transition. In contrast, high-salt extraction (1 M KCl) of spectrin-actin-depleted vesicles, a procedure that extracts proteins 2.1 and 4.1, was able to eliminate the 8 degrees C transition. Rebinding of purified protein 4.1 to the high salt extracted vesicles restored the 8 degrees C transition. These results indicate the involvement of protein 4.1 in the transition and suggest a functional membrane association of this protein. The binding of protein 4.1 to the membrane seems to contribute significantly to the thermotropic properties of red blood cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号