首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
  2019年   1篇
  2018年   1篇
  2015年   1篇
  2011年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
Transglutaminase activity, arising potentially from transglutaminase 2 (TG2) and Factor XIIIA (FXIIIA), has been linked to osteoblast differentiation where it is required for type I collagen and fibronectin matrix deposition. In this study we have used an irreversible TG-inhibitor to 'block -and-track' enzyme(s) targeted during osteoblast differentiation. We show that the irreversible TG-inhibitor is highly potent in inhibiting osteoblast differentiation and mineralization and reduces secretion of both fibronectin and type I collagen and their release from the cell surface. Tracking of the dansyl probe by Western blotting and immunofluorescence microscopy demonstrated that the inhibitor targets plasma membrane-associated FXIIIA. TG2 appears not to contribute to crosslinking activity on the osteoblast surface. Inhibition of FXIIIA with NC9 resulted in defective secretory vesicle delivery to the plasma membrane which was attributable to a disorganized microtubule network and decreased microtubule association with the plasma membrane. NC9 inhibition of FXIIIA resulted in destabilization of microtubules as assessed by cellular Glu-tubulin levels. Furthermore, NC9 blocked modification of Glu-tubulin into 150 kDa high-molecular weight Glu-tubulin form which was specifically localized to the plasma membrane. FXIIIA enzyme and its crosslinking activity were colocalized with plasma membrane-associated tubulin, and thus, it appears that FXIIIA crosslinking activity is directed towards stabilizing the interaction of microtubules with the plasma membrane. Our work provides the first mechanistic cues as to how transglutaminase activity could affect protein secretion and matrix deposition in osteoblasts and suggests a novel function for plasma membrane FXIIIA in microtubule dynamics.  相似文献   
2.
Labdane diterpene andrographolide (1) is a major constituent of Andrographis paniculata and known to exhibit wide spectrum of biological activities. In this study, regioselective monoesters of (1) have been synthesized by using Amano lipase AK (Pseudomonas fluorescens) as a biocatalyst. Amano lipase AK was able to execute highly efficient esterification of hydroxyl group attached to C-14 carbon of (1) in presence of acyl donors. Among the various synthesized derivatives including two novel compounds such as andrographolide-14-propionate (3) and andrographolide-14-caproate (5) displayed antimicrobial activity against Staphylococcus aureus with low minimal inhibitory concentration (MIC) 4?µg/mL and 16?µg/mL respectively. Furthermore, they have shown low hemolysis activity at their respective MIC and increase in the permeability of the bacterial cell membrane as delineated by FITC uptake and SEM imaging studies.  相似文献   
3.
The positive effects of the sex hormone in sustaining bone homeostasis are exercised by maintaining the equilibrium between cell activity and apoptosis. In this regard, the importance of estrogen receptors in maintaining the bone is that it is an attractive drug target, if devoid of known side effects . In this study, we show that a natural pure compound Azadirachtin A (Aza A) isolated from Azadirachta indica binds selectively to a site in the estrogen receptor, identifying itself to be a selective tissue modifier. Using computational and medicinal chemistry, we show that Aza A binds potentially and selectively to estrogen receptor-α (ERα) as compared with ERβ. This preferential binding of Aza A to ERα with good pharmacokinetic distribution in the body forms metabolites, showing that it is well absorbed. In in vivo estrogen deficiency models for osteoporosis, Aza A at a much lower dose enhances new bone formation at both sites of the trabecular and cortical bone with increased bone strength and presents with no hyperplastic effect in the uterus.  相似文献   
4.
Human pancreatic α-amylase (HPA) inhibitors offer an effective strategy to lower postprandial hyperglycemia via control of starch breakdown. Limonoids from Azadirachta indica known for their therapeutic potential were screened for pancreatic α-amylase inhibition, a known anti-diabetic target. Studies were carried out to reveal their mode of action so as to justify their hypoglycemic potential. Of the nine limonoids isolated/semi-synthesized from A.indica and screened for α-amylase inhibition, azadiradione and exhibited potential inhibition with an IC50 value of 74.17 and 68.38 μM, respectively against HPA under in vitro conditions. Further screening on AR42J α-amylase secretory cell line for cytotoxicity and bioactivity revealed that azadiradione and gedunin exhibited cytotoxicity with IC50 of 11.1 and 13.4μM. Maximal secreted α-amylase inhibition of 41.8% and 53.4% was seen at 3.5 and 3.3μM, respectively. Michaelis-Menten kinetics suggested a mixed mode of inhibition with maltopentaose (K i 42.2, 18.6 μM) and starch (K i 75.8, 37.4 μM) as substrate with a stiochiometry of 1:1 for both azadiradione and gedunin, respectively. The molecular docking simulation indicated plausible π-alkyl and alkyl-alkyl interactions between the aromatic amino acids and inhibitors. Fluorescence and CD confirmed the involvement of tryptophan and tyrosine in ligand binding to HPA. Thermodynamic parameters suggested that binding is enthalpically and entropically driven with ΔG° of -21.25 kJ mol-1 and -21.16 kJ mol-1 for azadiradione and gedunin, respectively. Thus, the limonoids azadiradione and gedunin could bind and inactivate HPA (anti-diabetic target) and may prove to be lead drug candidates to reduce/control post-prandial hyperglycemia.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号