首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   1篇
  2021年   1篇
  2018年   3篇
  2017年   1篇
  2016年   1篇
  2015年   2篇
  2014年   3篇
  2012年   2篇
  2011年   4篇
  2006年   1篇
  2005年   1篇
  2001年   1篇
  1991年   1篇
排序方式: 共有21条查询结果,搜索用时 218 毫秒
1.
A field experiment was conducted on an Ultisol in Malaysia to assess changes in soil solution composition and their effects on maize and groundnut yields, resulting from limestone and gypsum application. The results showed that soil solution Ca in the lime treatment remained mainly in the zone of incorporation, but in the gypsum treatment some Ca moved into 15–30 cm zone. Al3+ and AlSO4 + were dominant Al species in the soil solution of nil treatment. Liming decreased Al3+ and AlSO4 +, but increased hydroxy-Al monomer activities. However, gypsum application resulted in an increase of AlSO4 + activity and in a decrease of Al3+ activity. Relative maize and groundnut yields were negatively correlated with Al3+, Al(OH)2+ and Alsum activities. Likewise, relative yields were negatively correlated with Al concentration and the Al concentration ratio and positively correlated with soil solution Mg concentration and Ca/Al ratio.  相似文献   
2.
The structure and function of the outer coat protein VP9 of Banna virus   总被引:4,自引:0,他引:4  
Banna virus (BAV: genus Seadornavirus, family Reoviridae) has a double-shelled morphology similar to rotavirus and bluetongue virus. The structure of BAV outer-capsid protein VP9 was determined by X-ray crystallography at 2.6 A resolution, revealing a trimeric molecule, held together by an N-terminal helical bundle, reminiscent of coiled-coil structures found in fusion-active proteins such as HIV gp41. The major domain of VP9 contains stacked beta sheets with marked structural similarities to the receptor binding protein VP8 of rotavirus. Anti-VP9 antibodies neutralize viral infectivity, and, remarkably, pretreatment of cells with trimeric VP9 increased viral infectivity, indicating that VP9 is involved in virus attachment to cell surface and subsequent internalization. Sequence similarities were also detected between BAV VP10 and VP5 portion of rotavirus VP4, suggesting that the receptor binding and internalization apparatus, which is a single gene product activated by proteoloysis in rotavirus, is the product of two separate genome segments in BAV.  相似文献   
3.
4.

Background

Dengue induced acute kidney injury (AKI) imposes heavy burden of illness in terms of morbidity and mortality. A retrospective study was conducted to investigate incidence, characteristics, risk factors and clinical outcomes of AKI among dengue patients.

Methodology

A total 667 dengue patients (2008–2013) were retrospectively evaluated and were stratified into AKI and non-AKI groups by using AKIN criteria. Two groups were compared by using appropriate statistical methods.

Results

There were 95 patients (14.2%) who had AKI, with AKIN-I, AKIN-II and AKIN-III in 76.8%, 16.8% and 6.4% patients, respectively. Significant differences (P<0.05) in demographics and clinico-laboratory characteristics were observed between patients with and without AKI. Presence of dengue hemorrhagic fever [OR (95% CI): 8.0 (3.64–17.59), P<0.001], rhabdomyolysis [OR (95% CI): 7.9 (3.04–20.49)], multiple organ dysfunction [OR (95% CI): 34.6 (14.14–84.73), P<0.001], diabetes mellitus [OR (95% CI): 4.7 (1.12–19.86), P = 0.034], late hospitalization [OR (95% CI): 2.1 (1.12–19.86), P = 0.033] and use of nephrotoxic drugs [OR (95% CI): 2.9 (1.12–19.86), P = 0.006] were associated with AKI. Longer hospital stay (>3 days) was also observed among AKI patients (OR = 1.3, P = 0.044). Additionally, 48.4% AKI patients had renal insufficiencies at discharge that were signicantly associated with severe dengue, secondary infection and diabetes mellitus. Overall mortality was 1.2% and all fatal cases had AKI.

Conclusions

The incidence of AKI is high at 14.2% among dengue patients, and those with AKI portended significant morbidity, mortality, longer hospital stay and poor renal outcomes. Our findings suggest that AKI in dengue is likely to increase healthcare burden that underscores the need of clinicians’ alertness to this highly morbid and potentially fatal complication for optimal prevention and management.  相似文献   
5.
The genus Orbivirus includes both insect and tick-borne viruses. The orbivirus genome, composed of 10 segments of dsRNA, encodes 7 structural proteins (VP1-VP7) and 3 non-structural proteins (NS1-NS3). An open reading frame (ORF) that spans almost the entire length of genome segment-9 (Seg-9) encodes VP6 (the viral helicase). However, bioinformatic analysis recently identified an overlapping ORF (ORFX) in Seg-9. We show that ORFX encodes a new non-structural protein, identified here as NS4. Western blotting and confocal fluorescence microscopy, using antibodies raised against recombinant NS4 from Bluetongue virus (BTV, which is insect-borne), or Great Island virus (GIV, which is tick-borne), demonstrate that these proteins are synthesised in BTV or GIV infected mammalian cells, respectively. BTV NS4 is also expressed in Culicoides insect cells. NS4 forms aggregates throughout the cytoplasm as well as in the nucleus, consistent with identification of nuclear localisation signals within the NS4 sequence. Bioinformatic analyses indicate that NS4 contains coiled-coils, is related to proteins that bind nucleic acids, or are associated with membranes and shows similarities to nucleolar protein UTP20 (a processome subunit). Recombinant NS4 of GIV protects dsRNA from degradation by endoribonucleases of the RNAse III family, indicating that it interacts with dsRNA. However, BTV NS4, which is only half the putative size of the GIV NS4, did not protect dsRNA from RNAse III cleavage. NS4 of both GIV and BTV protect DNA from degradation by DNAse. NS4 was found to associate with lipid droplets in cells infected with BTV or GIV or transfected with a plasmid expressing NS4.  相似文献   
6.
The study of beetle communities is a valuable approach for biogeographical and conservation studies because their species and ecological diversities are very high, and they take different roles in ecosystems. However, beetle macroecology and conservation studies are disproportionately scarce, especially in tropical Asia. The objective of this study is to compare beetle abundance, diversity and species richness along the elevation gradients in two mountains in Peninsular Malaysia. Three passive sampling methods were utilized for beetle sampling with four marked elevation gradients: 500 m, 1000 m, 1500 m and 1800 m. Species richness in Fraser’s Hill was higher at highest elevation, but this value was not-significantly different from these in other elevations, except for the site at 1000 m with significantly lower estimates. Genting Highlands showed a significant decrease in species richness with the increase in elevation, without differences between the higher elevation sites. Pairwise comparison of species richness, Simpson Dominance and Shannon diversity between same elevation sites of Fraser’s Hill and Genting Highlands were all significantly different. The levels of vertical and horizontal colonization have had comparatively different weights in terms of their effect on the pattern of diversity and the integration of the beetle community in these two localities. At Fraser’s Hill, similar conditions at different elevations drives different responses, whereas at Genting Highlands contrasting and different environmental conditions at each elevation, drives different responses. We suggest the potential use of these results for biodiversity conservation in terms of climate variables in accordance with niche patterns.  相似文献   
7.
Extremophiles - Serine hydroxymethyltransferase (SHMT) and threonine aldolase are classified as fold type I pyridoxal-5’-phosphate-dependent enzymes and engaged in glycine biosynthesis from...  相似文献   
8.
The complete genomes of Orungo virus (ORUV), Lebombo virus (LEBV) and Changuinola virus (CGLV) were sequenced, confirming that they each encode 11 distinct proteins (VP1-VP7 and NS1-NS4). Phylogenetic analyses of cell-attachment protein ‘outer-capsid protein 1′ (OC1), show that orbiviruses fall into three large groups, identified as: VP2(OC1), in which OC1 is the 2nd largest protein, including the Culicoides transmitted orbiviruses; VP3(OC1), which includes the mosquito transmitted orbiviruses; and VP4(OC1) which includes the tick transmitted viruses. Differences in the size of OC1 between these groups, places the T2 ‘subcore-shell protein’ as the third largest protein ‘VP3(T2)’ in the first of these groups, but the second largest protein ‘VP3(T2)’ in the other two groups. ORUV, LEBV and CGLV all group with the Culicoides-borne VP2(OC1)/VP3(T2) viruses. The G+C content of the ORUV, LEBV and CGLV genomes is also similar to that of the Culicoides-borne, rather than the mosquito-borne, or tick borne orbiviruses. These data suggest that ORUV and LEBV are Culicoides- rather than mosquito-borne. Multiple isolations of CGLV from sand flies suggest that they are its primary vector. OC1 of the insect-borne orbiviruses is approximately twice the size of the equivalent protein of the tick borne viruses. Together with internal sequence similarities, this suggests its origin by duplication (concatermerisation) of a smaller OC1 from an ancestral tick-borne orbivirus. Phylogenetic comparisons showing linear relationships between the dates of evolutionary-separation of their vector species, and genetic-distances between tick-, mosquito- or Culicoides-borne virus-groups, provide evidence for co-evolution of the orbiviruses with their arthropod vectors.  相似文献   
9.

Background

Dengue virus is endemic in peninsular Malaysia. The clinical manifestations vary depending on the incubation period of the virus as well as the immunity of the patients. Glucose-6-phosphate dehydrogenase (G6PD) deficiency is prevalent in Malaysia where the incidence is 3.2%. It has been noted that some G6PD-deficient individuals suffer from more severe clinical presentation of dengue infection. In this study, we aim to investigate the oxidative responses of DENV2-infected monocytes from G6PD-deficient individuals.

Methodology

Monocytes from G6PD-deficient individuals were infected with DENV2 and infection rate, levels of oxidative species, nitric oxide (NO), superoxide anions (O2 ), and oxidative stress were determined and compared with normal controls.

Principal Findings

Monocytes from G6PD-deficient individuals exhibited significantly higher infection rates compared to normal controls. In an effort to explain the reason for this enhanced susceptibility, we investigated the production of NO and O2 in the monocytes of individuals with G6PD deficiency compared with normal controls. We found that levels of NO and O2 were significantly lower in the DENV-infected monocytes from G6PD-deficient individuals compared with normal controls. Furthermore, the overall oxidative stress in DENV-infected monocytes from G6PD-deficient individuals was significantly higher when compared to normal controls. Correlation studies between DENV-infected cells and oxidative state of monocytes further confirmed these findings.

Conclusions/Significance

Altered redox state of DENV-infected monocytes from G6PD-deficient individuals appears to augment viral replication in these cells. DENV-infected G6PD-deficient individuals may contain higher viral titers, which may be significant in enhanced virus transmission. Furthermore, granulocyte dysfunction and higher viral loads in G6PD-deificient individuals may result in severe form of dengue infection.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号