首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   977篇
  免费   75篇
  国内免费   3篇
  1055篇
  2024年   4篇
  2023年   33篇
  2022年   48篇
  2021年   82篇
  2020年   84篇
  2019年   114篇
  2018年   74篇
  2017年   48篇
  2016年   58篇
  2015年   41篇
  2014年   71篇
  2013年   89篇
  2012年   67篇
  2011年   63篇
  2010年   37篇
  2009年   34篇
  2008年   29篇
  2007年   20篇
  2006年   13篇
  2005年   16篇
  2004年   5篇
  2003年   6篇
  2002年   5篇
  2000年   2篇
  1998年   2篇
  1997年   1篇
  1995年   1篇
  1994年   1篇
  1992年   1篇
  1989年   1篇
  1988年   2篇
  1985年   1篇
  1980年   1篇
  1977年   1篇
排序方式: 共有1055条查询结果,搜索用时 15 毫秒
1.
Angiogenesis is a vital step in tissue regeneration. Hence, the current study aimed to prepare oxidized dextran (Odex)/collagen (Col)-hydrogels with laminin (LMN), as an angiogenic extracellular matrix (ECM) component, for promoting human umbilical vein endothelial cell (HUVEC) proliferation and function. Odex/Col scaffolds were constructed at various concentrations and temperatures. Using oscillatory rheometry, scanning electron microscopy (SEM), and cell viability testing, the scaffolds were characterized, and then HUVEC proliferation and function was compared with or without LMN. The gelation time could be modified by altering the Odex/Col mass ratio as well as the temperature. SEM showed that Odex/Col hydrogels had a more regular three-dimensional (3D) porous structure than the Col hydrogels. Moreover, HUVECs grew faster in the Col scaffold (12 mg/mL), whereas the Odex (30 mg/mL)/Col (6 mg/mL) scaffold exhibited the lowest apoptosis index. Furthermore, the expression level of vascular endothelial growth factor (VEGF) mRNA in the group without LMN was higher than that with LMN, and the Odex (30 mg/mL)/Col (6 mg/mL) scaffold without LMN had the highest VEGF protein secretion, allowing the cells to survive and function effectively. Odex/Col scaffolds, with or without LMN, are proposed as a tissue engineering construct to improve HUVEC survival and function for angiogenesis.  相似文献   
2.
Background:Prostate cancer is known as one of the most prevalent health disorders in the male population globally. The aim of the current study was to evaluate the effects of separate and concomitant use of MK-2206 and salinomycin on prostate cancer cell line.Methods:The antitumor potential of separate and concomitant use of MK-2206 and salinomycin was evaluated in a panel of prostate cancer cell line (PC-3). To get insights into the underlying mechanism of action, different assays including the rate of apoptosis, cell viability, and gene expression were performed in treated prostate cancer cells.Results:A significant reduction was detected in the viability percentage of prostate cancer cells (p< 0.001) and the rate of Akt expression (p< 0.001) in all salinomycin, MK-2206, and salinomycin+MK-2206 groups compared to the negative control group. Furthermore, in comparison with the negative control group, there was a notable increase in both the rate of Bad expression (p< 0.001) and prostate cancer cells apoptosis after salinomycin, MK-2206, and salinomycin+MK-2206 treatments. Moreover, the concomitant use of salinomycin+MK-2206 revealed synergistic improvements regarding the viability of prostate cancer cells and the rate of the Akt and Bad expressions compared to the separate administration of salinomycin and MK-2206 (all p< 0.05)Conclusion:The findings of the present study may contribute to improving the efficacy of the therapies regarding the management of prostate cancer and providing a beneficial strategy in clinical trials.Key Words: Apoptosis, Gene Expression, MK 2206, Prostatic Neoplasms, Salinomycin  相似文献   
3.
In this paper, a most sensitive electrochemical biosensor for detection of prostate‐specific antigen (PSA) was designed. To reach the goal, a sandwich type electrode composed of reduced graphene oxide/ gold nanoparticles (GO/AuNPs), Anti‐Total PSA monoclonal antibody, and anti‐Free PSA antibody was assembled. The functionalized materials were thoroughly characterized by atomic force microscope spectroscopy, transmission electron microscopy, and X‐ray diffraction techniques. The electrochemical properties of each of the modification step were evaluated by cyclic voltammetry and electrochemical impedance spectroscopy. The results presented that the proposed biosensor possesses high sensitivity toward total and free PSA. Furthermore, the fabricated biosensor revealed an excellent selectivity for PSA in comparison to the other tumor markers such as BHCG, Alb, CEA, CA125, and CA19‐9. The limit of detection for the proposed electrochemical biosensor was estimated to be around 0.2 and 0.07 ng/mL for total and free PSA antigen, respectively.  相似文献   
4.
5.
Twenty three fused carbazole–imidazoles 6a–w were designed, synthesized, and screened as new α-glucosidase inhibitors. All the synthesized fused carbazole-imidazoles 6a-w were found to be more active than acarbose (IC50?=?750.0?±?1.5?µM) against yeast α-glucosidase with IC50 values in the range of 74.0?±?0.7–298.3?±?0.9?µM. Kinetic study of the most potent compound 6v demonstrated that this compound is a competitive inhibitor for α-glucosidase (Ki value?=?75?µM). Furthermore, the in silico studies of the most potent compounds 6v and 6o confirmed that these compounds interacted with the key residues in the active site of α-glucosidase.  相似文献   
6.

Background  

A hot new topic in medical treatment is the use of mesenchymal stem cells (MSC) in therapy. The low frequency of this subpopulation of stem cells in bone marrow (BM) necessitates their in vitro expansion prior to clinical use. We evaluated the effect of long term culture on the senescence of these cells.  相似文献   
7.
Plasmonics - In this paper, we study the optical properties and surface plasmon resonance of a bimetallic core-shell spherical nanoparticle exhibiting monolayer graphene coatings. The extinction...  相似文献   
8.
International Journal of Peptide Research and Therapeutics - Fetal exposure to alcohol can cause a wide range of long-lasting physiological and behavioral effects, collectively referred to as fetal...  相似文献   
9.
Adequate support of energy for biological activities and during fluctuation of energetic demand is crucial for healthy aging; however, mechanisms for energy decline as well as compensatory mechanisms that counteract such decline remain unclear. We conducted a discovery proteomic study of skeletal muscle in 57 healthy adults (22 women and 35 men; aged 23–87 years) to identify proteins overrepresented and underrepresented with better muscle oxidative capacity, a robust measure of in vivo mitochondrial function, independent of age, sex, and physical activity. Muscle oxidative capacity was assessed by 31P magnetic resonance spectroscopy postexercise phosphocreatine (PCr) recovery time (τPCr) in the vastus lateralis muscle, with smaller τPCr values reflecting better oxidative capacity. Of the 4,300 proteins quantified by LC‐MS in muscle biopsies, 253 were significantly overrepresented with better muscle oxidative capacity. Enrichment analysis revealed three major protein clusters: (a) proteins involved in key energetic mitochondrial functions especially complex I of the electron transport chain, tricarboxylic acid (TCA) cycle, fatty acid oxidation, and mitochondrial ABC transporters; (b) spliceosome proteins that regulate mRNA alternative splicing machinery, and (c) proteins involved in translation within mitochondria. Our findings suggest that alternative splicing and mechanisms that modulate mitochondrial protein synthesis are central features of the molecular mechanisms aimed at maintaining mitochondrial function in the face of impairment. Whether these mechanisms are compensatory attempt to counteract the effect of aging on mitochondrial function should be further tested in longitudinal studies.  相似文献   
10.
In this study, a novel electroconductive interface was prepared based on Fe3O4 magnetic nanoparticle and cysteamine functionalized gold nanoparticle. The engineered interface was used as signal amplification substrate in the electrochemical analysis of antibody‐antigen binding. For this purpose, biotinilated‐anti‐prostate‐specific antigen (PSA) antibody was bioconjugated with iron oxide magnetic nanoparticles (Fe3O4) and drop‐casted on the surface of glassy carbon electrode (GCE). Also, secondary antibody (HRP‐Ab2) encapsulated on gold nanoparticles caped by cysteamine was immobilized on the surface of GCE modified electrode. A transmission electron microscopy images shows that a sandwich immunoreaction was done and binding of Ab1 and Ab2 performed successfully. Various parameters of immunoassay, including the loading of magnetic nanoparticles, the amount of gold nanoparticle conjugate, and the immunoreaction time, were optimized. The detection limit of 0.001 μg. L?1 of PSA was obtained under optimum experimental conditions. It is found that such magneto‐bioassay could be readily used for simultaneous parallel detection of multiple proteins by using multiple inorganic metal nanoparticle tracers and are expected to open new opportunities for early stage diagnosis of cancer in near future.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号