Stem cells from human exfoliated deciduous teeth (SHED) are highly proliferative, clonogenic and multipotent stem cells with a neural crest cell origin. Additionally, they can be collected with minimal invasiveness in comparison with other sources of mesenchymal stem cells (MSCs). Therefore, SHED could be a desirable option for potential therapeutic applications. In this study, SHEDs were established from enzyme-disaggregated deciduous dental pulp obtained from 6 to 9 year-old children. The cells had typical fibroblastoid morphology and expressed antigens characteristic of MSCs, STRO1, CD146, CD45, CD90, CD106 and CD166, but not the hematopoietic and endothelial markers, CD34 and CD31, as assessed by FACS analysis. Differentiation assessment revealed a strong osteogenic and adipogenic potential of SHEDs. In order to further evaluate the in vitro differentiation potential of SHED into neural cells, a simple short time growth factor-mediated induction was used. Immunofluorescence staining and flow cytometric analysis revealed that SHED rapidly expressed nestin and b-III tubulin, and later expressed intermediate neural markers. In addition, the intensity and percentages of nestin and b-III tubulin and mature neural markers (PSA-NCAM, NeuN, Tau, TH, or GFAP) increased significantly following treatment. Moreover, RT-PCR and Western blot analyses showed that the neural markers were strongly up-regulated after induction. In conclusion, these results provide evidence that SHED can differentiate into neural cells by the expression of a comprehensive set of genes and proteins that define neural-like cells in vitro. SHED cells might be considered as new candidates for the autologous transplantation of a wide variety of neurological diseases and neurotraumatic injuries. 相似文献
Acute myocardial infarction (AMI) is the leading cause of death among cardiovascular diseases. Among the numerous attempts to develop coronary marker concepts into clinical strategies, cardiac troponin is known as a specific marker for coronary events. The cardiac troponin concentration level in blood has been shown to rise rapidly for 4–10 days after onset of AMI, making it an attractive approach for a long diagnosis window for detection. The extremely low clinical sensing range of cardiac troponin levels consequently makes the methods of detection highly sensitive. In this review, by taking into consideration optical methods applied for cardiac troponin detection, we discuss the most commonly used methods of optical immunosensing and provide an overview of the various diagnostic cardiac troponin immunosensors that have been employed for determination of cardiac troponin over the last several years. 相似文献
Abstract The plasmid-mediated TEM-1 and TEM-2 β-lactamases are the most commonly encountered among Gram-negative bacteria. They belong to molecular class A, and differ by one amino acid at position 39: TEM-1 have a glutamine and TEM-2 a lysine. Kinetic parameters ( k cat and K m) and catalytic efficiency ( k cat/ K m) of TEM-1 and TEM-2 β-lactamases are slightly, but significantly different. For all antibiotics except methicillin and cefazolin, the catalytic efficiency values of TEM-2 are clearly greater than that of TEM-1. Molecular modelling of TEM-2, when compared to that of TEM-1, showed an additional ionic bond between Lys-39 and Glu-281. 相似文献
A collection of cDNA libraries from white spruce (Picea glauca) and interior spruce (P. glauca × engelmanii) vascular tissue were analyzed to identify a set of genes that could serve as tissue-related markers within the coniferous vascular system. Multivariate exploratory methods identified up to 128 genes co-expressed similarly among three xylem libraries. The majority (87) of these genes formed three distinctive meta-clusters, denoting putative gene cliques in xylem tissue. Of the selected genes, 33 (25%) exhibited no significant sequence homology in queries against any public databases, indicating the possibility of their unique expression in the xylem tissue of conifers. Another 38 genes (30%) had ambiguous annotation. Validation of the annotated genes with analog data, obtained from a wet-lab study utilizing microarray slides with 18,881 spots, resulted in a screened list of 29 genes as xylem-related markers. Response to stress was the predominant category to which the screened genes corresponded. Among the screened genes, elements of the phenolics biosynthesis, cinnamyl alcohol dehydrogenase and laccase, together with the fundamental enzyme of the cell wall biosynthesis, cellulose synthase, prominently delineated characteristics of the wood-forming tissue, xylem. 相似文献
Plant–insect interactions are ubiquitous, and have been studied intensely because of their relevance to damage and pollination in agricultural plants, and to the ecology and evolution of biodiversity. Variation within species can affect the outcome of these interactions. Specific genes and chemicals that mediate these interactions have been identified, but genome‐ or metabolome‐scale studies might be necessary to better understand the ecological and evolutionary consequences of intraspecific variation for plant–insect interactions. Here, we present such a study. Specifically, we assess the consequences of genome‐wide genetic variation in the model plant Medicago truncatula for Lycaeides melissa caterpillar growth and survival (larval performance). Using a rearing experiment and a whole‐genome SNP data set (>5 million SNPs), we found that polygenic variation in M. truncatula explains 9%–41% of the observed variation in caterpillar growth and survival. Genetic correlations among caterpillar performance and other plant traits, including structural defences and some anonymous chemical features, suggest that multiple M. truncatula alleles have pleiotropic effects on plant traits and caterpillar performance (or that substantial linkage disequilibrium exists among distinct loci affecting subsets of these traits). A moderate proportion of the genetic effect of M. truncatula alleles on L. melissa performance can be explained by the effect of these alleles on the plant traits we measured, especially leaf toughness. Taken together, our results show that intraspecific genetic variation in M. truncatula has a substantial effect on the successful development of L. melissa caterpillars (i.e., on a plant–insect interaction), and further point toward traits potentially mediating this genetic effect. 相似文献
To encapsulate piperine (Pip), as a poor water-soluble bioactive compound, zein-sodium caseinate-xanthan gum (Z-SG-XG) nanocomplex was prepared as a colloidal delivery system. The effect of different parameters involved in complexation process, including concentration of proteins, polysaccharide, and Pip on the encapsulation efficiency of Pip, particle size and stability of the nanocomplexes was investigated. Powders obtained by freeze-drying of the colloidal solution had relatively uniform particles compared to those obtained from conventional drying system and showed well redispersibility in water. At the optimal condition, a stable and homogeneous nanocomplex with a mean particle size of 145.9 ± 2.7 nm, PDI of 0.27 ± 0.01, and ζ-potential of −39.7 ± 1.3 mV was obtained. The antioxidant activity of Pip was significantly improved by encapsulation into the Z-SC-XG nanocomplex. Also, the in vitro release of Pip from the synthesized nanocomplexes in phosphate-buffer saline (PBS) solution and simulated gastrointestinal fluids (SGIF) was investigated and the release kinetic was studied as well. The Pip/Z-SG-XG nanocomplex showed a slower release in SGIF compared to the free Pip and nanoparticles without XG and SC, while its antioxidant activity was remarkable. Results suggested a possible utilization of Z-SC-XG nanocomplex for improving the water solubility, bioavailability and storage stability of Pip.
New data and records of the genus Chrysotoxum Meigen, 1803 are reported, arising from taxonomic and faunistic examination of adult specimens collected from 1920 to 2011 from four northeastern provinces of Turkey (Erzurum, Bayburt, Kars, and Artvin), and from the neighboring countries of Armenia, Azerbaijan and Iran. Three new species are described: Chrysotoxum antennalis Vuji?, Nedeljkovi? &; Hayat sp. n., C. clausseni Vuji?, Nedeljkovi? &; Hayat sp. n. and C. persicum Vuji?, Nedeljkovi? &; Hayat sp. n. The first two are known only from northeastern Turkey, and the third also occurs in Armenia, Azerbaijan and Iran. These new species have in common an antenna with the basoflagellomere being shorter than the scape and pedicel together.http://www.zoobank.org/urn:lsid:zoobank.org:pub:4C264678-8E47-4DE0-AC7D-91DABC597BCD相似文献
Due to pluripotency of induced pluripotent stem (iPS) cells, and the lack of immunological incompatibility and ethical issues, iPS cells have been considered as an invaluable cell source for future cell replacement therapy. This study was aimed first at establishment of novel iPS cells, ECiPS, which directly reprogrammed from human Eye Conjunctiva-derived Mesenchymal Stem Cells (EC-MSCs); second, comparing the inductive effects of Wnt3a/Activin A biomolecules to IDE1 small molecule in derivation of definitive endoderm (DE) from the ECiPS cells. To that end, first, the EC-MSCs were transduced by SOKM-expressing lentiviruses and characterized for endogenous expression of embryonic markers Then the established ECiPS cells were induced to DE formation by Wnt3a/Activin A or IDE1. Quantification of GSC, Sox17 and Foxa2 expression, as DE-specific markers, in both mRNA and protein levels revealed that induction of ECiPS cells by either Wnt3a/Activin A or IDE1 could enhance the expression level of the genes; however the levels of increase were higher in Wnt3a/Activin A induced ECiPS-EBs than IDE1 induced cells. Furthermore, the flow cytometry analyses showed no synergistic effect between Activin A and Wnt3a to derive DE-like cells from ECiPS cells. The comparative findings suggest that although both Wnt3a/Activin A signaling and IDE1 molecule could be used for differentiation of iPS into DE cells, the DE-inducing effect of Wnt3a/Activin A was statistically higher than IDE1. 相似文献