首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   141篇
  免费   15篇
  国内免费   1篇
  2023年   1篇
  2021年   1篇
  2017年   1篇
  2016年   3篇
  2015年   4篇
  2014年   6篇
  2013年   13篇
  2012年   5篇
  2011年   6篇
  2010年   5篇
  2009年   7篇
  2008年   10篇
  2007年   9篇
  2006年   4篇
  2005年   5篇
  2004年   2篇
  2003年   5篇
  2002年   4篇
  2001年   4篇
  2000年   1篇
  1999年   5篇
  1998年   3篇
  1997年   2篇
  1996年   3篇
  1995年   1篇
  1994年   1篇
  1993年   5篇
  1992年   4篇
  1991年   1篇
  1989年   1篇
  1987年   1篇
  1986年   2篇
  1985年   2篇
  1984年   3篇
  1983年   4篇
  1982年   1篇
  1981年   3篇
  1979年   2篇
  1978年   2篇
  1977年   3篇
  1976年   4篇
  1975年   1篇
  1973年   1篇
  1971年   1篇
  1969年   2篇
  1968年   2篇
  1960年   1篇
排序方式: 共有157条查询结果,搜索用时 31 毫秒
1.
Holthuisana transversa reabsorbs much of its exoskeletal calcium in the last 3 days before ecdysis and stores it in circulating granules in the haemocoel and in non-circulating granules in the subepidermal connective tissue. Calcium enters the epidermal cells from the moulting fluid, probably through their apical microvilli and is either incorporated into intracellular calcium granules or exits the cell via the basolateral membranes to be used in formation of two other granule types. Intracellular granules (0.4–2 μm long) form in large masses in the apical cytoplasm of the epidermal cells. They are formed as membrane-bound vesicles by the Golgi, and calcium and organic matrix material are added from the surrounding cytoplasm. As development proceeds, lamellae appear and calcium carbonate is deposited in the matrix. Granule masses move basally and are stored in the connective tissue. Calcium is also incorporated into extracellular large granules (0.8–3.8 μm long) which are formed in narrow intercellular channels between epidermal cells. A third granule type (small granules, 0.26 μm diameter) is formed in subepidermal connective tissue cells and released into the haemolymph in very large numbers. Calcium was identified in the two larger granule types using X-ray microanalysis and significant amounts of phosphorus and potassium were also present in the large granules. A model for ion cycling between the exoskeleton and granules is presented.  相似文献   
2.
3.
4.
5.
The objective of this study was to determine whether cells in G(0) phase are functionally distinct from those in G(1) with regard to their ability to respond to the inducers of DNA synthesis and to retard the cell cycle traverse of the G(2) component after fusion. Synchronized populations of HeLa cells in G(1) and human diploid fibroblasts in G(1) and G(0) phases were separately fused using UV-inactivated Sendai virus with HeLa cells prelabeled with [(3)H]ThdR and synchronized in S or G(2) phases. The kinetics of initiation of DNA synthesis in the nuclei of G(0) and G(1) cells residing in G(0)/S and G(1)/S dikaryons, respectively, were studied as a function of time after fusion. In the G(0)/G(2) and G(1)/G(2) fusions, the rate of entry into mitosis of the heterophasic binucleate cells was monitored in the presence of Colcemid. The effects of protein synthesis inhibition in the G(1) cells, and the UV irradiation of G(0) cells before fusion, on the rate of entry of the G(2) component into mitosis were also studied. The results of this study indicate that DNA synthesis can be induced in G(0)nuclei after fusion between G(0)- and S-phase cells, but G(0) nuclei are much slower than G(1) nuclei in responding to the inducers of DNA synthesis because the chromatin of G(0) cells is more condensed than it is in G(1) cells. A more interesting observation resulting from this study is that G(0) cells is more condensed than it is in G(1) cells. A more interesting observation resulting from this study is that G(0) cells differ from G(1) cells with regard to their effects on the cell cycle progression of the G(2) nucleus into mitosis. This difference between G(0) and G(1) cells appears to depend on certain factors, probably nonhistone proteins, present in G(1) cells but absent in G(0) cells. These factors can be induced in G(0) cells by UV irradiation and inhibited in G(1) cells by cycloheximide treatment.  相似文献   
6.

Introduction

Exercise training has emerged as a promising therapeutic strategy to counteract physical dysfunction in adult systemic lupus erythematosus. However, no longitudinal studies have evaluated the effects of an exercise training program in childhood-onset systemic lupus erythematosus (C-SLE) patients. The objective was to evaluate the safety and the efficacy of a supervised aerobic training program in improving the cardiorespiratory capacity in C-SLE patients.

Methods

Nineteen physically inactive C-SLE patients were randomly assigned into two groups: trained (TR, n = 10, supervised moderate-intensity aerobic exercise program) and non-trained (NT, n = 9). Gender-, body mass index (BMI)- and age-matched healthy children were recruited as controls (C, n = 10) for baseline (PRE) measurements only. C-SLE patients were assessed at PRE and after 12 weeks of training (POST). Main measurements included exercise tolerance and cardiorespiratory measurements in response to a maximal exercise (that is, peak VO2, chronotropic reserve (CR), and the heart rate recovery (ΔHRR) (that is, the difference between HR at peak exercise and at both the first (ΔHRR1) and second (ΔHRR2) minutes of recovery after exercise).

Results

The C-SLE NT patients did not present changes in any of the cardiorespiratory parameters at POST (P > 0.05). In contrast, the exercise training program was effective in promoting significant increases in time-to-exhaustion (P = 0.01; ES = 1.07), peak speed (P = 0.01; ES = 1.08), peak VO2 (P = 0.04; ES = 0.86), CR (P = 0.06; ES = 0.83), and in ΔHRR1 and ΔHRR2 (P = 0.003; ES = 1.29 and P = 0.0008; ES = 1.36, respectively) in the C-SLE TR when compared with the NT group. Moreover, cardiorespiratory parameters were comparable between C-SLE TR patients and C subjects after the exercise training intervention, as evidenced by the ANOVA analysis (P > 0.05, TR vs. C). SLEDAI-2K scores remained stable throughout the study.

Conclusion

A 3-month aerobic exercise training was safe and capable of ameliorating the cardiorespiratory capacity and the autonomic function in C-SLE patients.

Trial registration

NCT01515163.  相似文献   
7.
8.
The amyloidoses consist of human and animal chronic, progressive, and sometimes fatal diseases that are characterized by the deposition of insoluble proteinaceous amyloid fibrils in various tissues. Despite the biochemical diversity of amyloids, they share certain properties. The amphipathic and the charged nature of many amyloid-forming peptides point to their intrinsic ability to form diverse beta-sheet-based aggregates and channel types in negatively charged membranes. We hypothesize that the formation of heterogeneous channels represents a common cytotoxic mechanism that accentuates the changes in the signal transduction that underlie amyloid-induced cell malfunction. One group of amyloid-forming peptides that could mediate their action via the formation of heterogeneous channels includes the extensively examined prions and amyloid beta protein that are associated with conformational neurodegenerative diseases. The aim of this study is to examine heterogeneous channels formed in bilayers with amyloid-forming peptides as a common mechanism of malfunction of signal transduction. The observed amyloid-formed channel types include the following. (1) Natriuretic peptides: (i) 68-pS H2O2- and Ba2+-sensitive channel with fast kinetics. The fast channel had three modes (spike mode, burst mode, and open mode), which differ in their kinetics but not in their conductance properties; (ii) a 273-pS inactivating large conductance channel; and (iii) a 160-pS transiently activated channel. (2) Prions: (i) a 140-pS GSSG- and TEA-sensitive channel with fast kinetics; (ii) a 41-pS dithiothreitol (DTT)-sensitive channel with slow kinetics; (iii) a 900 to 1444-pS large channel. (3) Amyloid beta protein: (i) a 17 to 63-pS AbetaP[1-40]-formed "bursting" fast cation channel, (ii) the AbetaP[1-40]-formed "spiky" fast cation channel with a similar kinetics to the "bursting" fast channel except for the absence of the long intraburst closures, (iii) 275-pS AbetaP[1-40]-formed medium conductance channel, and (iv) 589- to 704-pS AbetaP[1-40]-formed inactivating large conductance channel. This heterogeneity is one of the most common features of these charged cytotoxic amyloid-formed channels, reflecting these channels' ability to modify multiple cellular functions. Although the diversity of these aggregated-peptide-formed channels may indicate that a stochastic mechanism governs their formation, the fact that certain channel types are often observed point to preferential channel protein conformations. In addition, the fact that other amyloids have similar structural properties (e.g. hydrophobicity, charged residues, and beta-structural linkages, suggests that, despite the intrinsic ability to form diverse conformations, certain conformations and, hence, certain channel types could be a common pathologic conformation among these amyloid-forming peptides. It is concluded that conformation-based channel diversity is an important mechanism for enhancing the toxicity of amyloid-forming peptides. The cytotoxic nature of these self-associated beta-based protein channels suggests that under normal physiological conditions cells employ well-evolved protective mechanisms against seeding and/or propagation of channel-forming peptides; for example, (a) compartmentalization of these peptides as membrane bound in internal vesicles and/or (b) degradation of these peptides by enzymes. The pharmacological diversity of the amyloid-forming channels implies that multiple therapeutic interventions may be necessary for blocking and reversing heterogeneous channel formations and preventing their associated diseases.  相似文献   
9.
Bisphosphonates are potent antiresorptive drugs commonly employed in the treatment of metabolic bone diseases. Despite their frequent use, the mechanisms of bisphosphonates on bone cells have largely remained unclear. Receptor activator of nuclear factor-kappaB ligand (RANKL) is essential for osteoclast formation and activation, whereas osteoprotegerin (OPG) neutralizes RANKL. Various osteotropic drugs have been demonstrated to modulate osteoblastic production of RANKL and OPG. In this study, we assessed the effects of the bisphosphonates pamidronate (PAM) and zoledronic acid (ZOL) on OPG mRNA steady-state levels (by semiquantitative RT-PCR) and protein production (by ELISA) in primary human osteoblasts (hOB). PAM increased OPG mRNA levels and protein secretion by hOB by up to 2- to 3-fold in a dose-dependent fashion with a maximum effect at 10(-6) M (P < 0.001) after 72 h. Similarly, ZOL enhanced OPG gene expression and protein secretion by hOB in a dose-dependent fashion with a maximum effect at 10(-8) M after 72 h, consistent with the higher biological potency of ZOL. Time course experiments indicated a stimulatory effect of PAM and ZOL on osteoblastic OPG protein secretion by 6-fold, respectively (P < 0.001). Pretreatment with PAM and ZOL prevented the inhibitory effects of the glucocorticoid dexamethasone on OPG mRNA and protein production. Analysis of cellular markers of osteoblastic differentiation revealed that PAM and ZOL induced type I collagen secretion and alkaline phosphatase activity by 2- and 4-fold, respectively (P < 0.0001 by ANOVA). In conclusion, our data suggest that bisphosphonates modulate OPG production by normal human osteoblasts, which may contribute to the inhibition of osteoclastic bone resorption. Since, OPG production increases with osteoblastic cell maturation, enhancement of OPG by bisphosphonates could be related to their stimulatory effects on osteoblastic differentiation.  相似文献   
10.
1. The lipid bilayer technique was used to characterize the biophysical and pharmacological properties of several ion channels formed by incorporating amyloid beta protein fragment (AP) 1–40 into lipid membranes. Based on the conductance, kinetics, selectivity, and pharmacological properties, the following AP[1–40]-formed ion channels have been identified: (i) The AP[1–40]-formed bursting fast cation channel was characterized by (a) a single channel conductance of 63 pS (250/50 mM KCl cis/trans) at +140 mV, 17 pS (250/50 mM KCl cis/trans) at –160 mV, and the nonlinear current–voltage relationship drawn to a third-order polynomial, (b) selectivity sequence P K > P Na > P Li = 1.0:0.60:0.47, (c) Po of 0.22 at 0 mV and 0.55 at +120 mV, and (d) Zn2+-induced reduction in current amplitude, a typical property of a slow block mechanism. (ii) The AP[1–40]-formed spiky fast cation channel was characterized by (a) a similar kinetics to the bursting fast channel with exception for the absence of the long intraburst closures, (b) single channel conductance of 63 pS (250/50 KCl) at +140 mV 17 pS (250/50 KCl) at –160 mV, the current–voltage relationship nonlinear drawn to a third-order polynomial fit, and (c) selectivity sequence P Rb > P K > P Cs > P Na > P Li = 1.3:1.0:0.46:0.40:0.27. (iii) The AP[1–40]-formed medium conductance channel was charcterized by (a) 275 pS (250/50 mM KCl cis/trans) at +140 mV and 19 pS (250/50 mM KCl cis/trans) at –160 mV and (b) inactivation at Vms more negative than –120 and more positive than +120 mV. (iv) The AP[1–40]-formed inactivating large conductance channel was characterized by (a) fast and slow modes of opening to seven multilevel conductances ranging between 0–589 pS (in 250/50 mM KCl) at +140 mV and 0–704 pS (in 250/50 mM KCl) at –160 mV, (b) The fast mode which had a conductance of <250 pS was voltage dependent. The inactivation was described by a bell-shaped curve with a peak lag time of 7.2 s at +36 mV. The slow mode which had a conductance of >250 pS was also voltage dependent. The inactivation was described by a bell-shaped curve with a peak lag time of 7.0 s at –76 mV, (c) the value of P K/P choline for the fast mode was 3.9 and selectivity sequence P K > P Cs > P Na > P Li = 1.0:0.94:0.87:0.59. The value of P K/P choline for the slow mode was 2.7 and selectivity sequence P K > P Na > P Li > P Cs = 1.0:0.59:0.49:0.21, and (d) asymmetric blockade with 10 mM Zn2+-induced reduction in the large conductance state of the slow mode mediated via slow block mechanism. The fast mode of the large conductance channel was not affected by 10 mM Zn2+.2. It has been suggested that, although the bursting fast channel, the spiky fast channel and the inactivating medium conductance channel are distinct, it is possible that they are intermediate configurations of yet another configuration underlying the inactivating large conductance channel. It is proposed that this heterogeneity is one of the most common features of these positively-charged cytotoxic amyloid-formed channels reflecting these channels ability to modify multiple cellular functions.3. Furthermore, the formation of -sheet based oligomers could be an important common step in the formation of cytotoxic amyloid channels.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号