首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
  2022年   1篇
  2019年   1篇
  2015年   1篇
  2013年   1篇
  2012年   1篇
  2011年   2篇
  2010年   1篇
  2009年   1篇
排序方式: 共有9条查询结果,搜索用时 31 毫秒
1
1.
Molecular Biology Reports - Sesame is an ancient oilseed crop, known for its high oil content and quality. Its sensitivity to drought at early seedling stage is one of the limiting factors...  相似文献   
2.
3.
The reduction of (per)chlorate and nitrate in (per)chlorate-reducing bacteria shows similarities and differences. (Per)chlorate reductase and nitrate reductase both belong to the type?II DMSO family of enzymes and have a common bis(molybdopterin guanine dinucleotide)molybdenum cofactor. There are two types of dissimilatory nitrate reductases. With respect to their localization, (per)chlorate reductase is more similar to the dissimilatory periplasmic nitrate reductase. However, the periplasmic, unlike the membrane-bound, respiratory nitrate reductase, is not able to use chlorate. Structurally, (per)chlorate reductase is more similar to respiratory nitrate reductase, since these reductases have analogous subunits encoded by analogous genes. Both periplasmic (per)chlorate reductase and membrane-bound nitrate reductase activities are induced under anoxic conditions in the presence of (per)chlorate and nitrate respectively. During microbial (per)chlorate reduction, molecular oxygen is generated. This is not the case for nitrate reduction, although an atypical reaction in nitrite reduction linked to oxygen formation has been described recently. Microbial oxygen production during reduction of oxyanions may enhance biodegradation of pollutants under anoxic conditions.  相似文献   
4.

Genetic transformation of most indica rice (Oryza sativa) cultivars is hampered by poor in vitro culture performance and low regeneration potential. Histological study of primary calli can provide substantial information on their regeneration potential and can be used for early grading of calli expected to develop plantlets on regeneration media. The study was aimed to undertake histological analysis of primary calli derived from mature seeds of five indica rice cultivars viz. KSK-133, KS-282, Shaheen Basmati, Super Basmati, and DilRosh in order to assess their regeneration potential on different media combinations supplemented with various hormone concentrations (N6 + 2 mg/L 2,4-Dichlorophenoxyacetic acid; N6 + 2 mg/L 2–4 D + 2 mg/L Benzylaminopurine and MS + 2 mg/L 2,4-D). Calli with regeneration capability were subjected to histological assays by examining toulidine blue stained 5–8 μm thin sections for the presence of meristematic zones exhibiting embryogenic callus features. Based on our observations, formation of embryoids or embryoid-like structures was pronounced in KSK-133 and KS-282 calli. However, DilRosh, Super Basmati and Shaheen Basmati did not show these characteristic features. Three-week-old calli of all rice cultivars were transferred into regeneration medium (MS + 2 mg/L BAP + 1 mg/L Naphthaleneacetic acid). KSK-133 and KS-282 showed the highest regeneration potential (81% and 76%, respectively). These data were supported by histological observations where characteristic embryogenic units (EU) were noticed in these genotypes. These meristematic regions displayed high mitotic activity and stained relatively dark. The embryogenic calli cells were found heavily cytoplasmic with prominent nuclei and were located on the callus surface or inside surrounded by parenchymal cells.

  相似文献   
5.
Microbial (per)chlorate reduction is a unique process in which molecular oxygen is formed during the dismutation of chlorite. The oxygen thus formed may be used to degrade hydrocarbons by means of oxygenases under seemingly anoxic conditions. Up to now, no bacterium has been described that grows on aliphatic hydrocarbons with chlorate. Here, we report that Pseudomonas chloritidismutans AW-1T grows on n-alkanes (ranging from C7 until C12) with chlorate as electron acceptor. Strain AW-1T also grows on the intermediates of the presumed n-alkane degradation pathway. The specific growth rates on n-decane and chlorate and n-decane and oxygen were 0.5 ± 0.1 and 0.4 ± 0.02 day−1, respectively. The key enzymes chlorate reductase and chlorite dismutase were assayed and found to be present. The oxygen-dependent alkane oxidation was demonstrated in whole-cell suspensions. The strain degrades n-alkanes with oxygen and chlorate but not with nitrate, thus suggesting that the strain employs oxygenase-dependent pathways for the breakdown of n-alkanes.  相似文献   
6.
A mesophilic bacterium, strain An4, was isolated from an underground gas storage reservoir with methanol as substrate and perchlorate as electron acceptor. Cells were Gram-negative, spore-forming, straight to curved rods, 0.5–0.8 μm in diameter, and 2–8 μm in length, growing as single cells or in pairs. The cells grew optimally at 37°C, and the pH optimum was around 7. Strain An4 converted various alcohols, organic acids, fructose, acetoin, and H2/CO2 to acetate, usually as the only product. Succinate was decarboxylated to propionate. The isolate was able to respire with (per)chlorate, nitrate, and CO2. The G+C content of the DNA was 42.6 mol%. Based on the 16S rRNA gene sequence analysis, strain An4 was most closely related to Sporomusa ovata (98% similarity). The bacterium reduced perchlorate and chlorate completely to chloride. Key enzymes, perchlorate reductase and chlorite dismutase, were detected in cell-free extracts.  相似文献   
7.
The impact of nanotechnology in all areas of science and technology is evident. The expanding availability of a variety of nanostructures with properties in the nanometer size range has sparked widespread interest in their use in biotechnological systems, including the field of environmental remediation. Nanomaterials can be used as catalysts, adsorbents, membranes, water disinfectants and additives to increase catalytic activity and capability due to their high specific surface areas and nanosize effects. Thus, nanomaterials appear promising for new effective environmental technologies. Definitely, nanotechnology applications for site remediation and wastewater treatment are currently in research and development stages, and new innovations are underway. The synthesis of metallic nanoparticles has been intensively developed not only due to its fundamental scientific interest but also for many technological applications. The use of microorganisms in the synthesis of nanoparticles is a relatively new eco-friendly and promising area of research with considerable potential for expansion. On the other hand, chemical synthesis occurs generally under extreme conditions (e.g. pH, temperature) and also chemicals used may have associated environmental and human health impacts. This review is an overview of current research worldwide on the use of microorganisms during the biosynthesis of metallic nanoparticles and their unique properties that make them good candidates for many applications, including in biotechnology.  相似文献   
8.
Stripe rust is one of the most devastating diseases, caused by Puccinia striiformis f. sp. tritici, affecting a huge amount of wheat crops worldwide. In this study, the genetic diversity of 16 National Uniform Wheat Yield Trial (NUWYT) candidate lines was evaluated by using 22 screened microsatellite markers. These lines were found resistant for stripe rust at adult plant stage. These wheat microsatellite markers identified a total of 38 alleles, with an average of 2.3 alleles per microsatellite locus. The number of alleles ranged from one to five alleles and the highest number of alleles were associated with B genome (25), as compared to D (11) and A (2) genomes. The allelic polymorphism index content (PIC) reflecting the gene diversity of these microsatellite markers ranged from 0.00 to 0.66, with an average of 0.27. The maximum PIC value of 0.66 was observed for xgwm 159-5B and 0.64 for xgwm 413-1B. The gene diversity ranged from 0.00 to 0.71, with an average of 0.30. The genetic similarity matrix was used to construct a dendrogram and the cluster analysis was performed by the use of unweighted pair-group method with arithmetic average algorithm. This divided the entire 16 candidate lines into three main clusters on the basis of their similarity. Our results indicate that the genetic diversity among the 16 candidate NUWYT lines was very narrow.  相似文献   
9.
Selenium concentrations in the blood of 112 (56 females and 56 males) normal subjects, from different regions of the Punjab (Pakistan), have been determined using the technique of inductively coupled plasma-mass spectrometry. The whole blood selenium concentrations were found to be 452 ± 12 ppb (parts per billion or nano-gram of Se per gram freeze-dried blood or 96 ± 3 μg/L ), with 470 ± 16 ppb (or 100 ± 4 μg/L) in female and 435 ± 16 ppb (or 92 ± 4 μg/L) in male population. Compared with other populations of the world, these levels are amongst the lowest.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号