首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   0篇
  2023年   1篇
  2020年   1篇
  2019年   3篇
  2018年   1篇
  2015年   1篇
  2011年   1篇
  2010年   1篇
  2006年   1篇
  2003年   1篇
  1989年   1篇
排序方式: 共有12条查询结果,搜索用时 15 毫秒
1.
microRNAs (miRNAs) are a family of small noncoding RNAs that play a pivotal role in the regulation of main biological and physiological processes, including cell cycle regulation, proliferation, differentiation, apoptosis, stem cell maintenance, and organ development. Dysregulation of these tiny molecules has been related to different human diseases, such as cancer. It has been estimated that more than 50% of these noncoding RNA sequences are placed on fragile sites or cancer-associated genomic regions. After the discovery of the first specific miRNA signatures in breast cancer, many studies focused on the involvement of these small RNAs in the pathophysiology of breast tumors and their possible clinical implications as reliable prognostic biomarkers or as a new therapeutic approach. Therefore, the present review will focus on the recent findings on the involvement of miRNAs in the biology of breast cancer associated with their clinical implications.  相似文献   
2.
Human GNL3 (nucleostemin) is a recently discovered nucleolar protein with pivotal functions in maintaining genomic integrity and determining cell fates of various normal and cancerous stem cells. Recent reports suggest that targeting this GTP-binding protein may have therapeutic value in cancer. Although, sequence analyzing revealed that nucleostemin (NS) comprises 5 permuted GTP-binding motifs, a crystal structure for this protein is missing at Protein Data Bank (PDB). Obviously, any attempt for predicting of NS structure can further our knowledge on its functional sites and subsequently designing molecular inhibitors. Herein, we used bioinformatics tools and could model 262 amino acids of NS (132-393 aa). Initial models were built by MODELLER, refined with Scwrl4 program, and validated with ProsA and Jcsc databases as well as PSVS software. Then, the best quality model was chosen for motif and domain analyzing by Pfam, PROSITE and PRINTS. The final model was visualized by vmd program. This predicted model may pave the way for next studies regarding ligand binding states and interaction sites as well as screening of databases for potential inhibitors.  相似文献   
3.
Mast cells (MCs) have been thought to play a pathogenic role in the development of autoimmune diseases, including experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis. However, an immunoregulatory function of these cells has recently been suggested. We investigated the role of MCs in EAE using the W(-sh) mouse strain, which is MC deficient. W(-sh) mice developed earlier and more severe clinical and pathological disease with extensive demyelination and inflammation in the CNS. The inflammatory cells were mainly composed of CD4(+) T cells, monocyte/macrophages, neutrophils, and dendritic cells. Compared with wild-type mice, MC-deficient mice exhibited an increased level of MCP-1/CCR2 and CD44 expression on CD4(+) T cells in addition to decreased production of regulatory T cells, IL-4, IL-5, IL-27, and IL-10. We also found that levels of IL-17, IFN-γ, and GM-CSF were significantly increased in peripheral lymphocytes from immunized W(-sh) mice compared with those in peripheral lymphocytes from wild-type mice. Reconstitution of W(-sh) mice downregulated susceptibility to EAE, which correlated with MC recruitment and regulatory T cell activation in the CNS. These findings indicate that responsiveness is not required in the pathogenesis of inflammatory demyelination in the CNS and that, in the absence of MCs, increased MCP-1, CCR2, IL-17, IFN-γ, CD44, and other inflammatory molecules may be responsible for increased severity of EAE.  相似文献   
4.
5.
Oligodendrocyte (OL) loss and demyelination occur after spinal cord injury (SCI). Stimulation of remyelination through transplantation of myelinating cells may be effective in improving function. For the repair strategy to be successful, the selection of a suitable cell and maintaining cell growth when cells are injected directly to the site of injury is important. In addition to selecting the type of cell, fibrin hydrogel was used as a suitable tissue engineering scaffold for this purpose. To test the relationship between myelination and functional improvement, the human endometrial stem cells (hEnSCs) were differentiated toward oligodendrocyte progenitor cells (OPCs) using overexpression of miR-219. Adult female Wistar rats were used to induce SCI by using a compression model and were randomly assigned to the following four experimental groups: SCI, Vehicle, hEnSC, and OPC. Ten days after injury, miR-219 overexpressed hEnSC-derived OPCs encapsulated in fibrin hydrogel, as an injectable scaffold, were injected to the injury site. In this study, with a focus on promoting functional recovery after SCI, the Basso-Beattie-Bresnahan test was performed to evaluate the recovery of motor function every week for 10 weeks and the histological assay was then performed. Results showed that the rate of motor function recovery was significantly higher in OPC group compared to SCI and vehicle groups but no marked differences were found between OPC and hEnSC groups, although, the rate of myelination in the OPC group was significantly higher than the other groups. These results demonstrated that remyelination was not the cause of recovery of motor function.  相似文献   
6.
Radiotherapy uses high doses of energy to eradicate cancer cells and control tumors. Various treatment schedules have been developed and tried in clinical trials, yet significant obstacles remain to improving the radiotherapy fractionation. Genetic and non-genetic cellular diversity within tumors can lead to different radiosensitivity among cancer cells that can affect radiation treatment outcome. We propose a minimal mathematical model to study the effect of tumor heterogeneity and repair in different radiation treatment schedules. We perform stochastic and deterministic simulations to estimate model parameters using available experimental data. Our results suggest that gross tumor volume reduction is insufficient to control the disease if a fraction of radioresistant cells survives therapy. If cure cannot be achieved, protocols should balance volume reduction with minimal selection for radioresistant cells. We show that the most efficient treatment schedule is dependent on biology and model parameter values and, therefore, emphasize the need for careful tumor-specific model calibration before clinically actionable conclusions can be drawn.  相似文献   
7.
A group of (E)-1,3-diphenylprop-2-en-1-one derivatives (chalcones) possessing a MeSO(2)NH, or N(3), COX-2 pharmacophore at the para-position of the C-1 phenyl ring were synthesized using a facile stereoselective Claisen-Schmidt condensation reaction. In vitro COX-1/COX-2 structure-activity relationships were determined by varying the substituents on the C-3 phenyl ring (4-H, 4-Me, 4-F, and 4-OMe). Among the 1,3-diphenylprop-2-en-1-ones possessing a C-1 para-MeSO(2)NH COX-2 pharmacophore, (E)-1-(4-methanesulfonamidophenyl)-3-(4-methylphenyl)prop-2-en-1-one (7b) was identified as a selective COX-2 inhibitor (COX-2 IC(50)=1.0 microM; selectivity index >100) that was less potent than the reference drug rofecoxib (COX-2 IC(50)=0.50 microM; SI>200). The corresponding 1,3-diphenylprop-2-en-1-one analogue possessing a C-1 para-N(3) COX-2 pharmacophore, (E)-1-(4-azidophenyl)-3-(4-methylphenyl)prop-2-en-1-one (7f), exhibited potent and selective COX-2 inhibition (COX-1 IC(50)=22.2 microM; COX-2 IC(50)=0.3 microM; SI=60). A molecular modeling study where 7b and 7f were docked in the binding site of COX-2 showed that the p-MeSO(2)NH and N(3) substituents on the C-1 phenyl ring are oriented in the vicinity of the COX-2 secondary pocket (His90, Arg513, Phe518, and Val523). The structure-activity data acquired indicate that the propenone moiety constitutes a suitable scaffold to design new acyclic 1,3-diphenylprop-2-en-1-ones with selective COX-1 or COX-2 inhibitory activity.  相似文献   
8.
Twenty-nine species of green algae (from four classes: Charophyceae, Chlorophyceae, Pleurastrophyceae, and Ulvophyceae, but not the Micromonadophyceae), five species of bryophytes, and four species of vascular plants were tested for the presence of iron, manganese, and copper-zinc superoxide dismutase. Copper-zinc superoxide dismutase was found in members of the Charophyceae, Bryophyta, and Tracheophyta. Manganese and/or iron superoxide dismutase were found in all classes of green algae and most land plants. The presence of the copper-zinc form of superoxide dismutase only in the class of green algae hypothesized to be closest to the land plant progenitors strengthens the argument for that phylogenetic relationship. It also suggests that this form of superoxide dismutase was a vital attribute for the survival of the earliest land plants.  相似文献   
9.

Background

The progression of normal cells through the cell cycle is meticulously regulated by checkpoints guaranteeing the exact replication of the genome during S-phase and its equal division at mitosis. A prerequisite for this achievement is synchronized DNA-replication and centrosome duplication. In this context the expression of cyclins A and E has been shown to play a principal role.

Results

Our results demonstrated a correlation between centrosome amplification, cell cycle fidelity and the level of mRNA and protein expression of cyclins A and E during the part of the cell cycle defined as G1-phase by means of DNA content based histogram analysis. It is shown that the normal diploid breast cell line HTB-125, the genomically relatively stable aneuploid breast cancer cell line MCF-7, and the genomically unstable aneuploid breast cancer cell line MDA-231 differ remarkably concerning both mRNA and protein expression of the two cyclins during G1-phase. In MDA-231 cells the expression of e.g. cyclin A mRNA was found to be ten times higher than in MCF-7 cells and about 500 times higher than in HTB-125 cells. Topoisomerase II α showed high mRNA expression in MDA compared to MCF-7 cells, but the difference in protein expression was small. Furthermore, we measured centrosome aberrations in 8.4% of the MDA-231 cells, and in only 1.3% of the more stable aneuploid cell line MCF-7. MDA cells showed 27% more incorporation of BrdU than reflected by S-phase determination with flow cytometric DNA content analysis, whereas these values were found to be of the same size in both HTB-125 and MCF-7 cells.

Conclusions

Our data indicate that the breast cancer cell lines MCF-7 and MDA-231, although both DNA-aneuploid, differ significantly regarding the degree of cell cycle disturbance and centrosome aberrations, which partly could explain the different genomic stability of the two cell lines. The results also question the reliability of cytometric DNA content based S-phase determination in genomically unstable tumor cell populations.
  相似文献   
10.
Background: Helicobacter pylori infection of the stomach is widespread among human populations and is considered to play a major role in the pathogenesis of various diseases such as peptic ulcer, adenocarcinoma, and mucosa associated lymphoid tissue (MALT) lymphoma of the stomach. To increase H. pylori eradication rate without increasing bacterial resistance, various regimens have been recommended. Commonly the association of at least two antibiotics with a proton‐pump inhibitor is used. The treatment regimens for second‐line therapy, suggested in studies from the western world may not be ideal in Iran. Aim: In this study, we evaluated the safety and efficacy of a new quadruple therapy regimen and compared it with the standard second‐line treatment for H. pylori eradication. Methods: We selected 220 H. pylori positive patients, with a clear indication of eradication therapy, who did not respond to a 2 weeks treatment with metronidazole, amoxicillin, omeprazole, and bismuth. They were randomized into two groups. Group A (n = 110) were treated with azithromycin, ofloxacin, bismuth, and omeprazole and group B (n = 110) with amoxicillin, clarithromycin, bismuth, and omeprazole for 2 weeks. Four weeks after the end of treatment, urea breath test was performed for all subjects to confirm eradication. Results: In intention‐to‐treat analysis, the rate of H. pylori eradication in groups A and B was 77.3% (85/110) and 64.5% (71/110) respectively (p = .027). In per‐protocol analysis, the rate of H. pylori eradication in groups A and B was 86.7 and 74.7%, respectively (p = .026). The incidence of poor compliance was lower, although not significantly so, in group A than group B (3.5 vs 4.3%). No major adverse events occurred in both groups. Conclusion: Two weeks of treatment with ofloxacin, azithromycin, omeprazole, and bismuth is an effective and safe regimen for H. pylori eradication as second‐line therapy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号