首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   119篇
  免费   1篇
  国内免费   1篇
  121篇
  2023年   2篇
  2022年   1篇
  2021年   3篇
  2020年   4篇
  2019年   9篇
  2018年   3篇
  2017年   4篇
  2016年   7篇
  2015年   4篇
  2014年   2篇
  2013年   3篇
  2012年   16篇
  2011年   10篇
  2010年   4篇
  2009年   7篇
  2008年   6篇
  2007年   4篇
  2006年   6篇
  2005年   3篇
  2004年   10篇
  2003年   2篇
  2002年   4篇
  2000年   3篇
  1999年   1篇
  1997年   1篇
  1991年   1篇
  1981年   1篇
排序方式: 共有121条查询结果,搜索用时 0 毫秒
1.
2.
During angiogenesis, endothelial cells initiate a tissue-invasive program within an interstitial matrix comprised largely of type I collagen. Extracellular matrix-degradative enzymes, including the matrix metalloproteinases (MMPs) MMP-2 and MMP-9, are thought to play key roles in angiogenesis by binding to docking sites on the cell surface after activation by plasmin- and/or membrane-type (MT) 1-MMP-dependent processes. To identify proteinases critical to neovessel formation, an ex vivo model of angiogenesis has been established wherein tissue explants from gene-targeted mice are embedded within a three-dimensional, type I collagen matrix. Unexpectedly, neither MMP-2, MMP-9, their cognate cell-surface receptors (i.e., beta3 integrin and CD44), nor plasminogen are essential for collagenolytic activity, endothelial cell invasion, or neovessel formation. Instead, the membrane-anchored MMP, MT1-MMP, confers endothelial cells with the ability to express invasive and tubulogenic activity in a collagen-rich milieu, in vitro or in vivo, where it plays an indispensable role in driving neovessel formation.  相似文献   
3.
    
The plankton flora on the northeastern coast of the Gulf of Persia consists of many diatom species, the coccolithophores Gephyrocapsa oceanica and Coccolithus huxleyi, and the blue-green alga, Trichodesmium thiebautii. These are prevalent throughout the year and always at low concentrations, with an average maximum in January of 14463 cells/liter and minimum in June of 802/liter. Such comparative constancy suggests that the flora has the attribute of stability. The individual species fluctuate in a patternless, uncorrelated manner, so that the flora is characterized by the attribute of unpredictability. The turbidity of the shallow water reduces the light so that light is usually neither limiting nor inhibitory. There is a small amount of nitrate always available and ample phosphate and silicate. Pure culture studies of several species show growth from about 12° to 34°. The water was 34° in August of 1977. The flora's responsiveness to these light, nutrient, and temperature quantities makes possible its recovery to normal after advective disturbance in June 1977.Contribution number 4574 from the Woods Hole Oceanographic Institution.Contribution number 4574 from the Woods Hole Oceanographic Institution.  相似文献   
4.
    
A persistent challenge in the treatment of non‐small cell lung cancer (NSCLC) with EGFR is the emergence of drug‐resistant caused by somatic mutations. The EGFR L858R/T790 M double mutant (EGFRDM) was found to be the most alarming variant. Despite the development of a wide range of inhibitors, none of them could inhibit EGFRDM effectively. Recently, 11h and 45a , have been found to be potent inhibitors against EGFRDM through two distinctive mechanisms, non‐covalent and covalent binding, respectively. However, the structural and dynamic implications of the two modes of inhibitions remain unexplored. Herein, two molecular dynamics simulation protocols, coupled with free‐energy calculations, were applied to gain insight into the atomistic nature of each binding mode. The comparative analysis confirmed that there is a significant difference in the binding free energy between 11h and 45a (ΔΔGbind=?21.17 kcal/mol). The main binding force that governs the binding of both inhibitors is vdW, with a higher contribution for 45a . Two residues ARG841 and THR854 were found to have curtailed role in the binding of 45a to EGFRDM by stabilizing its flexible alcohol chain. The 45a binding to EGFRDM induces structural rearrangement in the active site to allow easier accessibility of 45a to target residue CYS797. The findings of this work can substantially shed light on new strategies for developing novel classes of covalent and non‐covalent inhibitors with increased specificity and potency.  相似文献   
5.
Fibroblasts degrade type I collagen, the major extracellular protein found in mammals, during events ranging from bulk tissue resorption to invasion through the three-dimensional extracellular matrix. Current evidence suggests that type I collagenolysis is mediated by secreted as well as membrane-anchored members of the matrix metalloproteinase (MMP) gene family. However, the roles played by these multiple and possibly redundant, degradative systems during fibroblast-mediated matrix remodeling is undefined. Herein, we use fibroblasts isolated from Mmp13−/−, Mmp8−/−, Mmp2−/−, Mmp9−/−, Mmp14−/− and Mmp16−/− mice to define the functional roles for secreted and membrane-anchored collagenases during collagen-resorptive versus collagen-invasive events. In the presence of a functional plasminogen activator-plasminogen axis, secreted collagenases arm cells with a redundant collagenolytic potential that allows fibroblasts harboring single deficiencies for either MMP-13, MMP-8, MMP-2, or MMP-9 to continue to degrade collagen comparably to wild-type fibroblasts. Likewise, Mmp14−/− or Mmp16−/− fibroblasts retain near-normal collagenolytic activity in the presence of plasminogen via the mobilization of secreted collagenases, but only Mmp14 (MT1-MMP) plays a required role in the collagenolytic processes that support fibroblast invasive activity. Furthermore, by artificially tethering a secreted collagenase to the surface of Mmp14−/− fibroblasts, we demonstrate that localized pericellular collagenolytic activity differentiates the collagen-invasive phenotype from bulk collagen degradation. Hence, whereas secreted collagenases arm fibroblasts with potent matrix-resorptive activity, only MT1-MMP confers the focal collagenolytic activity necessary for supporting the tissue-invasive phenotype.In the postnatal state, fibroblasts are normally embedded in a self-generated three-dimensional connective tissue matrix composed largely of type I collagen, the major extracellular protein found in mammals (13). Type I collagen not only acts as a structural scaffolding for the associated mesenchymal cell populations but also regulates gene expression and cell function through its interactions with collagen binding integrins and discoidin receptors (2, 4). Consistent with the central role that type I collagen plays in defining the structure and function of the extracellular matrix, the triple-helical molecule is resistant to almost all forms of proteolytic attack and can display a decades-long half-life in vivo (46). Nonetheless, fibroblasts actively remodel type I collagen during wound healing, inflammation, or neoplastic states (2, 713).To date type I collagenolytic activity is largely confined to a small subset of fewer than 10 proteases belonging to either the cysteine proteinase or matrix metalloproteinase (MMP)2 gene families (4, 1418). As all collagenases are synthesized as inactive zymogens, complex proteolytic cascades involving serine, cysteine, metallo, and aspartyl proteinases have also been linked to collagen turnover by virtue of their ability to mediate the processing of the pro-collagenases to their active forms (13, 15, 19). After activation, each collagenase can then cleave native collagen within its triple-helical domain, thus precipitating the unwinding or “melting” of the resulting collagen fragments at physiologic temperatures (4, 15). In turn, the denatured products (termed gelatin) are susceptible to further proteolysis by a broader class of “gelatinases” (4, 15). Collagen fragments are then either internalized after binding to specific receptors on the cell surface or degraded to smaller peptides with potent biological activity (2024).Previous studies by our group as well as others have identified MMPs as the primary effectors of fibroblast-mediated collagenolysis (20, 25, 26). Interestingly, adult mouse fibroblasts express at least six MMPs that can potentially degrade type I collagen, raising the possibility of multiple compensatory networks that are designed to preserve collagenolytic activity (25). Four of these collagenases belong to the family of secreted MMPs, i.e. MMP-13, MMP-8, MMP-2, and MMP-9, whereas the other two enzymes are members of the membrane-type MMP subgroup, i.e. MMP-14 (MT1-MMP) and MMP-16 (MT3-MMP) (13, 2729). From a functional perspective, the specific roles that can be assigned to secreted versus membrane-anchored collagenases remain undefined. As such, fibroblasts were isolated from either wild-type mice or mice harboring loss-of-function deletions in each of the major secreted and membrane-anchored collagenolytic genes, and the ability of the cells to degrade type I collagen was assessed. Herein, we demonstrate that fibroblasts mobilize either secreted or membrane-anchored MMPs to effectively degrade type I collagen in qualitatively and quantitatively distinct fashions. However, under conditions where fibroblasts use either secreted and membrane-anchored MMPs to exert quantitatively equivalent collagenolytic activity, only MT1-MMP plays a required role in supporting a collagen-invasive phenotype. These data establish a new paradigm wherein secreted collagenases are functionally limited to bulk collagenolytic processes, whereas MT1-MMP uniquely arms the fibroblast with a focalized degradative activity that mediates subjacent collagenolysis as well as invasion.  相似文献   
6.
An exocellular proteinase synthesized by the geophilic dermatophyte Trichophyton vanbreuseghemii has been purified and characterized. The fungus obtained from soil in Iran was cultivated in modified Czapek–Dox liquid medium containing 0.1% bacteriological peptone and 1% glucose as the nitrogen and carbon sources. Partial purification of the proteinase was accomplished by (NH4)2SO4 precipitation, followed by ion exchange chromatography. Analysis of the enzyme by SDS-PAGE revealed a single polypeptide chain with an apparent molecular mass of 37 kDa. Proteinase activity was optimum at pH 8, but remained high in the range of pH 7–11. Moreover, the partially purified enzyme presented a keratinolytic activity as evidenced by the keratin azure test. The inhibition profile and the good activity of the enzyme towards the synthetic substrate N-succinyl-Ala-Ala-Pro-Phe-p-nitroanilide suggested that it belonged to the chymotrypsin/subtilisin group of serine proteinases. The keratinolytic properties of T. vanbreuseghemii suggest that this fungus may be an alternative for the recycling of industrial keratinic wastes.  相似文献   
7.
The purpose of this study was to examine chitosan (CS)-carboxymethyl starch (CMS) nanoparticles as drug delivery system to the colon. The 5-aminosalicylic acid (5-ASA) was chosen as model drug molecule. CS-CMS nanoparticles were formulated by a complex coacervation process under mild conditions. The influence of process variables, including the two ionic polymers, on particle size, and nanoparticles entrapment of 5-ASA was studied. In vitro release of 5-ASA was also evaluated, and the integrity of 5-ASA in the release fraction was assessed using sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The release of 5-ASA from nanoparticle was based on the ion-exchange mechanism. The CS-CMS nanoparticles developed based on the modulation of ratio show promise as a system for controlled delivery of drug to the colon.  相似文献   
8.
Local drug delivery strategies have gained momentum recently as a promising modality in cancer therapy. In order to deliver Letrozole (LTZ) at the tumor site in therapeutically relevant concentrations, acetyl-polyamidoamine (Ac-PAMAM)-thiolated chitosan (TCS) films were fabricated. LTZ could be loaded at 31% wt/wt in films, which were translucent and flexible. Physicochemical characterization of LTZ via thermal technique revealed information on solid-state properties of LTZ as well as thiolated chitosan in films. While thiolated chitosan was in amorphous form, LTZ seemed to be present in both amorphous and crystalline forms in film. The lack of formulation-induced local inflammatory responses of LTZ-acetyl-polyamidoamine (Ac-PAMAM)-thiolated chitosan (TCS) films a new paradigm for localized chemotherapy based on breast delivery systems.  相似文献   
9.
10.
    
Stable expression of human groups IIA and X secreted phospholipases A(2) (hGIIA and hGX) in CHO-K1 and HEK293 cells leads to serum- and interleukin-1beta-promoted arachidonate release. Using mutant CHO-K1 cell lines, it is shown that this arachidonate release does not require heparan sulfate proteoglycan- or glycosylphosphatidylinositol-anchored proteins. It is shown that the potent secreted phospholipase A(2) inhibitor Me-Indoxam is cell-impermeable. By use of Me-Indoxam and the cell-impermeable, secreted phospholipase A(2) trapping agent heparin, it is shown that hGIIA liberates free arachidonate prior to secretion from the cell. With hGX-transfected CHO-K1 cells, arachidonate release occurs before and after enzyme secretion, whereas all of the arachidonate release from HEK293 cells occurs prior to enzyme secretion. Immunocytochemical studies by confocal laser and electron microscopies show localization of hGIIA to the cell surface and Golgi compartment. Additional results show that the interleukin-1beta-dependent release of arachidonate is promoted by secreted phospholipase A(2) expression and is completely dependent on cytosolic (group IVA) phospholipase A(2). These results along with additional data resolve the paradox that efficient arachidonic acid release occurs with hGIIA-transfected cells, and yet exogenously added hGIIA is poorly able to liberate arachidonic acid from mammalian cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号