首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   328篇
  免费   17篇
  2023年   2篇
  2022年   7篇
  2021年   10篇
  2020年   12篇
  2019年   20篇
  2018年   11篇
  2017年   11篇
  2016年   15篇
  2015年   25篇
  2014年   17篇
  2013年   38篇
  2012年   29篇
  2011年   23篇
  2010年   22篇
  2009年   11篇
  2008年   20篇
  2007年   11篇
  2006年   11篇
  2005年   10篇
  2004年   9篇
  2003年   16篇
  2002年   6篇
  2001年   1篇
  1998年   1篇
  1995年   1篇
  1993年   4篇
  1992年   1篇
  1990年   1篇
排序方式: 共有345条查询结果,搜索用时 171 毫秒
1.
Pili have been shown to play an essential role in the adhesion of Neisseria meningitidis to epithelial cells. However, among piliated strains, both inter- and intrastrain variability exist with respect to their degree of adhesion to epithelial cells in vitro (Virji et al., 1992). This suggests that factors other than the presence of pili per se are involved in this process. The N. meningitidis pilin subunit undergoes extensive antigenic variation. Piliated low- and high-adhesive derivatives of the same N. meningitidis strain were selected and the nucleotide sequence of the pilin gene expressed in each was determined. The highly adhesive derivatives had the same pilin sequence. The alleles encoding the pilin subunit of the low-adhesive derivatives were completely different from the one found in the high-adhesive isolates. Using polyclonal antibodies raised against one hyperadhesive variant, it was confirmed that the low-adhesive piliated derivatives expressed pilin variants antigenically different from the highly adhesive strains. The role of antigenic variation in the adhesive process of N. meningitidis was confirmed by performing allelic exchanges of the pilE locus between low-and high-adhesive isolates. Antigenic variation has been considered a means by which virulent bacteria evade the host immune system. This work provides genetic proof that a bacterial pathogen, N. meningitidis, can use antigenic variation to modulate their degree of virulence.  相似文献   
2.
International Journal of Peptide Research and Therapeutics - Natural compounds extracted from marine organisms consisting of biological active materials like collagen provide a major source of...  相似文献   
3.
The pathology and physiology of breast cancer(BC),including metastasis,and drug resistance,is driven by multiple signaling pathways in the tumor microenvironment(TME),which hamper antitumor immunity.Recently,long non-coding RNAs have been reported to mediate pathophysiological developments such as metastasis as well as immune suppression within the TME.Given the complex biology of BC,novel personalized therapeutic strategies that address its diverse pathophysiologies are needed to improve clinical outcomes.In this review,we describe the advances in the biology of breast neoplasia,including cellular and molecular biology,heterogeneity,and TME.We review the role of novel molecules such as long non-coding RNAs in the pathophysiology of BC.Finally,we provide an up-to-date overview of anticancer compounds extracted from marine microorganisms,crustaceans,and fishes and their synergistic effects in combination with other anticancer drugs.Marine compounds are a new discipline of research in BC and offer a wide range of anti-cancer effects that could be harnessed to target the various pathways involved in BC development,thus assisting current therapeutic regimens.  相似文献   
4.
Intraguild predation of Orius majusculus (Reuter) (Heteroptera: Anthocoridae) on Encarsia formosa (Gahan) (Hymenoptera: Aphelinidae), both natural enemies of Bemisia tabaci (Gennadius) (Homoptera: Aleyrodidae), was studied under laboratory conditions. The experiments quantified prey consumption by 5th instar nymphs and adults of O. majusculus offered unparasitised 3rd, early 4th or 4th instar B. tabaci nymphs or parasitised nymphs containing 2nd or 3rd larval instar or pupal parasitoids. In addition, prey preference of the two stages of O. majusculus for parasitised or unparasitised whitefly nymphs was studied using nine different prey combinations. Both predator stages readily preyed upon on both unparasitised and parasitised B. tabaci. In no-choice experiments, predation on 3rd instar E. formosa by adult predators was the highest, while predator nymphs preyed most on unparasitised 3rd instar B. tabaci and 2nd instar parasitoids. Predation of predator stages was lowest on 4th instar B. tabaci and E. formosa pupae. In all prey combinations, both stages of O. majusculus showed a significant preference for parasitised over unparasitised whitefly nymphs except for the combination of 5th instars of O. majusculus with early 4th instar whiteflies and E. formosa pupae. The results indicate that intraguild interactions between O. majusculus and E. formosa may have negative effects on biological control of B. tabaci.  相似文献   
5.
The interaction between oxazepam and C60 fullerene was explored using first-principles vdW-DF calculations. It was found that oxazepam binds weakly to the fullerene cage via its carbonyl group. The binding of oxazepam to C60 is affected drastically by nonlocal dispersion interactions, while vdW forces affect the corresponding geometries only a little. Furthermore, aqueous solution affects the geometries of the oxazepam approaching to fullerene slightly, while oxazepam binds slightly farther away from the nanocage. The results presented provide evidence for the applicability of the vdW-DF method and serve as a practical benchmark for the investigation of host–guest interactions in biological systems.
Figure
ab initio vdW-DF study on the possibility of formation of oxazepam/C60 complex at aqueous solution  相似文献   
6.
Neural responses to visual stimuli are strongest in the classical receptive field, but they are also modulated by stimuli in a much wider region. In the primary visual cortex, physiological data and models suggest that such contextual modulation is mediated by recurrent interactions between cortical areas. Outside the primary visual cortex, imaging data has shown qualitatively similar interactions. However, whether the mechanisms underlying these effects are similar in different areas has remained unclear. Here, we found that the blood oxygenation level dependent (BOLD) signal spreads over considerable cortical distances in the primary visual cortex, further than the classical receptive field. This indicates that the synaptic activity induced by a given stimulus occurs in a surprisingly extensive network. Correspondingly, we found suppressive and facilitative interactions far from the maximum retinotopic response. Next, we characterized the relationship between contextual modulation and correlation between two spatial activation patterns. Regardless of the functional area or retinotopic eccentricity, higher correlation between the center and surround response patterns was associated with stronger suppressive interaction. In individual voxels, suppressive interaction was predominant when the center and surround stimuli produced BOLD signals with the same sign. Facilitative interaction dominated in the voxels with opposite BOLD signal signs. Our data was in unison with recently published cortical decorrelation model, and was validated against alternative models, separately in different eccentricities and functional areas. Our study provides evidence that spatial interactions among neural populations involve decorrelation of macroscopic neural activation patterns, and suggests that the basic design of the cerebral cortex houses a robust decorrelation mechanism for afferent synaptic input.  相似文献   
7.
8.
Effect of four different cole crops (Brassica oleracea var. botrytis, Brassica oleracea var. capitata, Brassica oleracea var. italica and Brassica oleracea var. viridis) on biological parameters of the large white butterfly Pieris brassicae was evaluated at temperature 26 ± 1 °C, 60 ± 5% R. H. and a photoperiod of 16: 8 (L:D) h. The shortest larval and pupal period stages were recorded on B. oleracea var. botrytis (22.18 ± 0.20 days) and (13.32 ± 0.17 days), respectively. The life span was longest on B. oleracea var. viridis (60.43 ± 2.34 days) and shortest on B. oleracea var. botrytis (50.19 ± 0.51 days). The highest percentage of larval and pupal mortality was observed on B. oleracea var. viridis (74%), and (53%), respectively. We found that P. brassicae prefers B. oleracea var. botrytis and B. oleracea var. capitata among cole crops; it is due to the lowest percentage of larval and pupal mortality and the highest rate of life table parameters, including survival rate (lx) and life expectancy (ex), which makes them to be susceptible varieties to this pest. Contrary, a longer developmental time on B. oleracea var. viridis may be attributed to poor nutritional status and reduced survival of the cohort, resulting in high rates of mortality, which was partial resistance to pest. Knowledge of the biology and life table parameters of P. brassicae on different cole crops could be effective in detecting and monitoring the pest infestation, variety selection and crop breeding.  相似文献   
9.
The sweet protein brazzein, a member of the Csβα fold family, contains four disulfide bonds that lend a high degree of thermal and pH stability to its structure. Nevertheless, a variable temperature study has revealed that the protein undergoes a local, reversible conformational change between 37 and 3°C with a midpoint about 27°C that changes the orientations and side‐chain hydrogen bond partners of Tyr8 and Tyr11. To test the functional significance of this effect, we used NMR saturation transfer to investigate the interaction between brazzein and the amino terminal domain of the sweet receptor subunit T1R2; the results showed a stronger interaction at 7°C than at 37°C. Thus the low temperature conformation, which alters the orientations of two loops known to be critical for the sweetness of brazzein, may represent the bound state of brazzein in the complex with the human sweet receptor. Proteins 2013; © 2012 Wiley Periodicals, Inc.  相似文献   
10.
The sedentary semi-endoparasitic nematode Rotylenchulus reniformis, the reniform nematode, is a serious pest of cotton and soybean in the United States. In recent years, interest in the molecular biology of the interaction between R. reniformis and its plant hosts has increased; however, the unusual life cycle of R. reniformis presents a unique set of challenges to researchers who wish to study the developmental expression of a particular nematode gene or evaluate life stage–specific effects of a specific treatment such as RNA-interference or a potential nematicide. In this report, we describe a simple method to collect R. reniformis juvenile and vermiform adult life stages under in vitro conditions and a second method to collect viable parasitic sedentary females from host plant roots. Rotylenchulus reniformis eggs were hatched over a Baermann funnel and the resultant second-stage juveniles incubated in petri plates containing sterile water at 30°C. Nematode development was monitored through the appearance of fourth-stage juveniles and specific time-points at which each developmental stage predominated were determined. Viable parasitic sedentary females were collected from infected roots using a second method that combined blending, sieving, and sucrose flotation. Rotylenchulus reniformis life stages collected with these methods can be used for nucleic acid or protein extraction or other experimental purposes that rely on life stage–specific data.  相似文献   
1 [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] 下一页 » 末  页»
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号