首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   188篇
  免费   4篇
  192篇
  2024年   2篇
  2023年   6篇
  2022年   12篇
  2021年   21篇
  2020年   4篇
  2019年   5篇
  2018年   7篇
  2017年   4篇
  2016年   9篇
  2015年   15篇
  2014年   13篇
  2013年   16篇
  2012年   14篇
  2011年   10篇
  2010年   10篇
  2009年   10篇
  2008年   9篇
  2007年   6篇
  2006年   2篇
  2005年   4篇
  2004年   3篇
  2003年   2篇
  2002年   2篇
  1999年   1篇
  1977年   1篇
  1976年   1篇
  1973年   1篇
  1972年   1篇
  1970年   1篇
排序方式: 共有192条查询结果,搜索用时 15 毫秒
1.

Background  

We describe the case of a 38 year old male with Marfan syndrome who presented with orthostatic headaches and seizures.  相似文献   
2.
    
The Zoige wetland of the Tibetan Plateau is one of the largest alpine wetlands in the world and a major emission source of methane. Methane oxidation by methanotrophs can counteract the global warming effect of methane released in the wetlands. Understanding methanotroph activity, diversity and metabolism at the molecular level can guide the isolation of the uncultured microorganisms and inform strategy-making decisions and policies to counteract global warming in this unique ecosystem. Here we applied DNA stable isotope probing using 13C-labelled methane to label the genomes of active methanotrophs, examine the methane oxidation potential and recover metagenome-assembled genomes (MAGs) of active methanotrophs. We found that gammaproteobacteria of type I methanotrophs are responsible for methane oxidation in the wetland. We recovered two phylogenetically novel methanotroph MAGs distantly related to extant Methylobacter and Methylovulum. They belong to type I methanotrophs of gammaproteobacteria, contain both mxaF and xoxF types of methanol dehydrogenase coding genes, and participate in methane oxidation via H4MPT and RuMP pathways. Overall, the community structure of active methanotrophs and their methanotrophic pathways revealed by DNA-SIP metagenomics and retrieved methanotroph MAGs highlight the importance of methanotrophs in suppressing methane emission in the wetland under the scenario of global warming.  相似文献   
3.
DNA barcoding is currently gaining popularity due to its simplicity and high accuracy as compared to the complexity and subjective biases associated with morphology-based identification of taxa. The standard chloroplast DNA barcode for land plants recommended by the Consortium for the Barcode of Life (CBOL) plant working group needs to be evaluated for a wide range of plant species. We therefore tested the potential of the rbcL marker for the identification of wild plants belonging to diverse families of arid regions. Maximum likelihood tree analysis was performed to evaluate the discriminatory power of the rbcL gene. Our findings showed that using rbcL gene sequences enabled identification of the majority of the samples (92%) to genus level and only 17% to species level.  相似文献   
4.
5.
6.
The components that control trafficking between organelles of the secretory pathway as well as their architecture were uncovered to a reasonable extent in the past decades. However, only recently did we begin to explore the regulation of the secretory pathway by cellular signaling. In the current review, we focus on trafficking between the endoplasmic reticulum and the Golgi apparatus. We highlight recent advances that have been made toward a better understanding of how the secretory pathway is regulated by signaling and discuss how this knowledge is important to obtain an integrative view of secretion in the context of other homeostatic processes such as growth and proliferation.  相似文献   
7.
Carbon sources such as methanol and glycerol are used for enhancing denitrification at wastewater treatment plants, which are required to meet increasingly stringent effluent nitrogen limits. Consequently, dosing strategies for these compounds could benefit from the development and application of molecular activity biomarkers to infer and distinguish between methanol- or glycerol-based denitrification in activated sludge. In this study, the applicability of genes coding for methanol dehydrogenase (mdh2 and mxaF) and glycerol dehydrogenase (dhaD) as potential biomarkers of denitrification activity using these specific substrates was explored and confirmed using a two-pronged approach. First, during short-term spikes of activated sludge biomass with glycerol, the ability of dhaD mRNA concentrations to closely track nitrate depletion profiles was demonstrated. Second, a high-degree of correlation of the mRNA concentrations of mdh2, mxaF and dhaD with methanol- and glycerol-based denitrification kinetics during long-term bioreactor operation using these substrates was also shown. Based on these results, expression of mdh2, mxaF and dhaD genes are promising biomarkers of in situ denitrification activity on methanol and glycerol, respectively, in mixed-culture engineered wastewater treatment processes.  相似文献   
8.
    
BackgroundFemale genital schistosomiasis (FGS) is a neglected and disabling gynecological disease that can result from infection with the parasitic trematode Schistosoma haematobium. Accurate diagnosis of FGS is crucial for effective case management, surveillance and control. However, current methods for diagnosis and morbidity assessment can be inaccessible to those at need, labour intensive, costly and unreliable. Molecular techniques such as PCR can be used to reliably diagnose FGS via the detection of Schistosoma DNA using cervicovaginal lavage (CVL) samples as well as lesser-invasive vaginal self-swab (VSS) and cervical self-swab samples. PCR is, however, currently unsuited for use in most endemic settings. As such, in this study, we assessed the use of a rapid and portable S. haematobium recombinase polymerase amplification (Sh-RPA) isothermal molecular diagnostic assay, coupled with simplified sample preparation methodologies, to detect S. haematobium DNA using CVL and VSS samples provided by patients in Zambia.Methodology/Principal findingsVSS and CVL samples were screened for FGS using a previously developed Sh-RPA assay. DNA was isolated from VSS and CVL samples using the QIAamp Mini kit (n = 603 and 527, respectively). DNA was also isolated from CVL samples using two rapid and portable DNA extraction methods: 1) the SpeedXtract Nucleic Acid Kit (n = 223) and 2) the Extracta DNA Tissue Prep Kit (n = 136). Diagnostic performance of the Sh-RPA using VSS DNA extacts (QIAamp Mini kit) as well as CVL DNA extracts (QIAamp Mini kit, SpeedXtract Nucleic Acid Kit and Extracta DNA Tissue Prep Kit) was then compared to a real-time PCR reference test.Results suggest that optimal performance may be achieved when the Sh-RPA is used with PuVSS samples (sensitivity 93.3%; specificity 96.6%), however no comparisons between different DNA extraction methods using VSS samples could be carried out within this study. When using CVL samples, sensitivity of the Sh-RPA ranged between 71.4 and 85.7 across all three DNA extraction methods when compared to real-time PCR using CVL samples prepared using the QIAamp Mini kit. Interestingly, of these three DNA extraction methods, the rapid and portable SpeedXtract method had the greatest sensitivity and specificity (85.7% and 98.1%, respectively). Specificity of the Sh-RPA was >91% across all comparisons.Conclusions/SignificanceThese results supplement previous findings, highlighting that the use of genital self-swab sampling for diagnosing FGS should be explored further whilst also demonstrating that rapid and portable DNA isolation methods can be used to detect S. haematobium DNA within clinical samples using RPA. Although further development and assessment is needed, it was concluded that the Sh-RPA, coupled with simplified sample preparation, shows excellent promise as a rapid and sensitive diagnostic tool capable of diagnosing FGS at the point-of-care in resource-poor schistosomiasis-endemic settings.  相似文献   
9.
    
Fungus-growing termites are among the most successful herbivorous animals and improve crop productivity and soil fertility. A range of symbiotic organisms can be found inside their nests. However, interactions of termites with these symbionts are poorly understood. This review provides detailed information on the role of multipartite symbioses (between termitophiles, termites, fungi, and bacteria) in fungus-growing termites for lignocellulose degradation. The specific functions of each component in the symbiotic system are also discussed. Based on previous studies, we argue that the enzymatic contribution from the host, fungus, and bacteria greatly facilitates the decomposition of complex polysaccharide plant materials. The host–termitophile interaction protects the termite nest from natural enemies and maintains the stability of the microenvironment inside the colony.  相似文献   
10.
A mathematical model was developed to describe the biodegradation kinetics of perchlorate in the presence of nitrate and oxygen as competing electron acceptors. The rate of perchlorate degradation is described as a function of the electron donor (acetate) degradation rate, the concentration of the alternate electron acceptors, and rates of biomass growth and decay. The kinetics of biomass growth are described using a modified Monod model, and inhibition factors are incorporated to describe the influence of oxygen and nitrate on perchlorate degradation. In order to develop input parameters for the model, a series of batch biodegradation studies were performed using Azospira suillum JPLRND, a perchlorate-degrading strain isolated from groundwater. This strain is capable of utilizing oxygen, nitrate, or perchlorate as terminal electron acceptors. The maximum specific growth rate (μmax) and half-saturation constant (K S don) for the bacterium when utilizing either perchlorate or nitrate were similar; 0.16 per h and 158 mg acetate/L, respectively. However, these parameters were different when the strain was growing on oxygen. In this case, μmax and K S don were 0.22 per h and 119 mg acetate/L, respectively. The batch experiments also revealed that nitrate inhibits perchlorate biodegradation by this strain. This finding was incorporated into the model by applying an inhibition coefficient (K i nit) value of 25 mg nitrate/L. Combined with appropriate groundwater transport models, this model can be used to predict perchlorate biodegradation during in situ remediation efforts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号