首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   315篇
  免费   46篇
  361篇
  2015年   7篇
  2014年   10篇
  2013年   33篇
  2012年   10篇
  2011年   10篇
  2010年   8篇
  2009年   14篇
  2008年   14篇
  2007年   15篇
  2006年   7篇
  2005年   14篇
  2004年   9篇
  2003年   7篇
  2002年   9篇
  2001年   6篇
  2000年   13篇
  1999年   11篇
  1997年   5篇
  1996年   7篇
  1995年   2篇
  1993年   3篇
  1992年   7篇
  1991年   9篇
  1990年   4篇
  1989年   7篇
  1988年   10篇
  1987年   6篇
  1986年   6篇
  1985年   3篇
  1984年   2篇
  1982年   2篇
  1981年   2篇
  1980年   2篇
  1978年   6篇
  1977年   4篇
  1976年   2篇
  1975年   2篇
  1974年   3篇
  1971年   3篇
  1969年   2篇
  1966年   2篇
  1943年   2篇
  1915年   2篇
  1897年   2篇
  1883年   3篇
  1882年   5篇
  1881年   2篇
  1879年   6篇
  1878年   2篇
  1877年   2篇
排序方式: 共有361条查询结果,搜索用时 0 毫秒
1.
Recently, we have shown that inhalation of hydrogen sulfide (H2S) protects against ventilator-induced lung injury (VILI). In the present study, we aimed to determine the underlying molecular mechanisms of H2S-dependent lung protection by analyzing gene expression profiles in mice. C57BL/6 mice were subjected to spontaneous breathing or mechanical ventilation in the absence or presence of H2S (80 parts per million). Gene expression profiles were determined by microarray, sqRT-PCR and Western Blot analyses. The association of Atf3 in protection against VILI was confirmed with a Vivo-Morpholino knockout model. Mechanical ventilation caused a significant lung inflammation and damage that was prevented in the presence of H2S. Mechanical ventilation favoured the expression of genes involved in inflammation, leukocyte activation and chemotaxis. In contrast, ventilation with H2S activated genes involved in extracellular matrix remodelling, angiogenesis, inhibition of apoptosis, and inflammation. Amongst others, H2S administration induced Atf3, an anti-inflammatory and anti-apoptotic regulator. Morpholino mediated reduction of Atf3 resulted in elevated lung injury despite the presence of H2S. In conclusion, lung protection by H2S during mechanical ventilation is associated with down-regulation of genes related to oxidative stress and inflammation and up-regulation of anti-apoptotic and anti-inflammatory genes. Here we show that Atf3 is clearly involved in H2S mediated protection.  相似文献   
2.
Monocytes are known to produce both hematopoietic growth factors and other factors, monokines, which do not directly stimulate hematopoiesis. Monokines such as interleukin-1 (IL-1) and tumor necrosis factor (TNF) may indirectly stimulate mesenchymal cells to produce hematopoietic growth factors. The identity of all the factors produced by monocytes or mesenchymal cells has not been established because of overlapping activities on biologic assay. The purpose of this study was to identify the individual growth factors produced by endothelial cells before and after stimulation with various monokines. We prepared conditioned media and extracted RNA from endothelial cells before and after stimulation with monokines. The results show that immortalized endothelial cells produce maximal detectable amounts of granulocyte-macrophage colony-stimulating factor (GM-CSF) constitutively. In contrast, GM-CSF production by primary endothelial cells requires induction with either IL-1 or TNF.  相似文献   
3.
Human monocyte adhesion to vascular endothelium is an important transitional event in mononuclear phagocyte development. The molecular mechanism involved in monocyte adhesion to endothelial cells was studied using purified human monocytes and a panel of monoclonal antibodies (MAb). The purified human monocytes were phenotypically characterized and expressed relatively low levels of HLA class II antigens. The monocytes were labeled with Indium-111 to provide high specific activity and a sensitive measure of adhesion. Using this radionuclide adhesion assay, monocytes demonstrated consistent and reproducible adhesion to a confluent monolayer of human umbilical vein-derived endothelial cells. To identify the cell surface molecules involved in human monocyte-endothelial cell adhesion, 15 MAb to 11 monocyte surface structures were used to attempt to inhibit adhesion. MAb recognizing 10 monocyte cell surface molecules did not inhibit adhesion. In contrast, MAb recognizing the alpha and beta subunits of LFA-1 (lymphocyte function-associated) significantly inhibited monocyte adhesion to endothelial cells. Monocyte adhesion was comparably inhibited by F(ab')2 and intact MAb. Significant inhibition was observed at 5 micrograms/ml of anti-LFA-1 MAb. These results indicate that the alpha and beta subunits of the LFA-1 membrane molecule are involved in human monocyte-endothelial cell adhesions.  相似文献   
4.
L D Faller  R A Diaz 《Biochemistry》1989,28(17):6908-6914
Phosphorylation of the gastric H,K-ATPase by Pi has been studied by measuring the P18Oj16O4-j distribution as a function of time at different H+, K+, and [18O]Pi concentrations. The advantage of isotope exchange measurements is that the P18Oj16O4-j distribution depends on the relative rates of HOH loss to form the phosphoenzyme intermediate and Pi dissociation from the enzyme. Therefore, 18O exchange is a sensitive probe of mechanism. K+ increases the exchange rate (v(ex] but does not affect the partition coefficient (Pc) that determines the P18Oj16O4-j distribution. Conversely, H+ inhibits exchange. A single Pc describes the data at every pH, but the value increases from 0.04 at pH 8 to 0.64 at pH 5.5. Vex depends hyperbolically on [Pi]0. Km for Pi does not depend on pH, and Pc does not depend on [Pi]0. Individual rate constants in the phosphorylation mechanism are estimated. Formation of the E.Pi complex that looses HOH is 1-2 orders of magnitude slower at pH 5.5 than at pH 8 and is not diffusion controlled. The observed change in Pc with pH is compatible with catalysis occurring by a different mechanism when a group with pKa = 7.2 is protonated. Slower than diffusion-controlled formation of the E.Pi complex that splits out HOH is evidence for a relatively slow, unimolecular chemical transformation involving an additional intermediate in the phosphorylation mechanism, such as a protein conformational change.  相似文献   
5.
Several lines of evidence now exist to suggest an interaction between the platelet-derived growth factor (PDGF) growth-stimulatory signal transduction pathway and the beta interferon (IFN-beta) growth-inhibitory signal transduction pathway. The most direct examples are inhibition of PDGF-mediated gene induction and mitogenesis by IFN-beta and the effects of activators and inhibitors of the IFN-inducible double-stranded RNA-dependent eIF2 kinase on expression of PDGF-inducible genes. To further investigate the nature of this PDGF/IFN-beta interaction, we selected BALB/c-3T3 cells for resistance to growth inhibition by IFN-beta and analyzed the phenotypes of resulting clonal lines (called IRB cells) with respect to PDGF signal transduction. Although selected only for IFN resistance, the IRB cells were found to be defective for induction of growth-related genes c-fos, c-myc and JE in response to PDGF. This block to signal transduction was not due to loss or inactivation of PDGF receptors, as immunoprecipitation of PDGF receptors with antiphosphotyrosine antibodies showed them to be present at equal levels in the BALB/c-3T3 and IRB cells and to be autophosphorylated normally in response to PDGF. Furthermore, treatment with other peptide growth factors (PDGF-AA, fibroblast growth factor, and epidermal growth factor) also failed to induce c-fos, c-myc, or JE expression in IRB cells. All of these growth factors, however, were able to induce another early growth-related gene, Egr-1. The block to signaling was not due to a defect in inositol phosphate metabolism, as PDGF treatment induced normal calcium mobilization and phosphotidylinositol-3-kinase activation in these cells. Activation of protein kinase C by phorbol esters did induce c-fos, c-myc, and JE in IRB cells, indicating that signalling pathways distal to this enzyme remained intact. We have previously shown that IFN-inducible enzyme activities, including double-stranded RNA-dependent eIF2 kinase and 2',5'-oligoadenylate synthetase, are normal in IRB cells. The finding that the induction of multiple growth-related genes by several independent growth factors is inhibited in these IFN-resistant cells suggests that there is a second messenger common to both growth factor and IFN signaling pathways and that this messenger is defective in these cells.  相似文献   
6.
7.
Neutral amino acids in the brain: changes in response to food ingestion   总被引:18,自引:13,他引:5  
Abstract— The brain levels of each of the aromatic and branched-chain amino acids change 2 h after fasting rats begin to consume either a carbohydrate-fat diet or a similar diet containing 18% or 40% protein. Carbohydrate-fat ingestion elevates the concentrations of each of the aromatic amino acids in brain, while substantially depressing those of the branched-chain amino acids. The inclusion of protein in this diet suppresses the increases in brain aromatic amino acids and attenuates the decreases in the branched-chain amino acids. The changes in the brain level of each neutral amino acid following the ingestion of any of these diets correlate extremely well with the effects of the diet on the serum neutral amino acid pattern, specifically on the serum concentration ratio of each neutral amino acid to the sum of the other neutral amino acids. The diet-induced changes in the brain level of each of the amino acids also correlate surprisingly well with the calculated rate of brain influx for each amino acid.  相似文献   
8.
Summary Apical membrane vesicles from human term placenta were isolated using a magnesium precipitation technique, and the purity of the vesicles was assessed morphologically using scanning and transmission electron microscopy, and biochemically, using marker enzymes. The vesicles were found to be morphologically intact and significantly enriched in enzymes associated with apical membranes. 36Cl uptake into these vesicles was studied in the presence of an outwardly directed Cl gradient. This uptake was found to be time dependent, with an initial rapid uptake tending to peak between 10 and 20 min and thereafter decline. Uptake was found to be voltage dependent since 5 m valinomycin caused a decrease in uptake. The effects of N-phenylanthranilic acid (NPA) and 4,4-diisothiocyanostilbene-2,2-disulphonic acid (DIDS) and bumetanide on the initial rate of Cl were examined in the presence and absence of 5 m valinomycin. NPA and DIDS inhibited isotope uptake strongly with IC50 values of 0.83±0.35 m and 3.43±0.37 m, respectively, in the absence of valinomycin. Although valinomycin reduced 36Cl uptake by about 80% when added before the isotope, DIDS reduced the uptake which remained in a concentration-dependent fashion with an IC50 of 5.6±2.1 m. Under these conditions, NPA was without effect at concentrations below 100 m. Bumetanide was without effect at the concentrations used in the absence of valinomycin. However, following valinomycin pretreatment, bumetanide reduced 36Cl uptake significantly at 100 m concentration. Vesicle diameter, as assessed by flow cytometry, did not change under the conditions employed.The effects of some fatty acids were also investigated. Arachidonic acid and linoleic acid inhibited Cl uptake with IC50 values of 37.6±14.9 m and 4.59±0.51 m, respectively. Arachidonyl alcohol and elaidic acid were found to be without effect. These studies show that human placental brush border membrane vesicles possess a chloride conductance channel, the activity of which can be measured in the presence of an outwardly directed Cl gradient and this channel is sensitive to Cl channel inhibitors, especially N-phenylanthranilic acid, and can be inhibited by unsaturated fatty acids such as arachidonic acid and linoleic acid.This work was supported in part by the Cystic Fibrosis Association of Ireland and Eolas, The Irish Science and Technology Agency. The technical assistance of Mr. Cormac O' Connell in the preparation of the electron micrographs and of Mr. Roddy Monks in the flow cytometric analysis is gratefully acknowledged.  相似文献   
9.
X-ray photoelectron spectroscopy was used to determine the oxidation states of osmium compounds present in erythrocyte ghost preparations and related systems treated with osmium tetroxide. Osmium tetroxide and cholesterol, codeposited at -100 degrees C, began to react at -70 degrees C, and Os(VI) was formed. Similarly, Os(VI) was detected for the known cholesterol-osmate ester prepared and purified chemically. However, osmium tetroxide applied in phosphate buffer (pH 7.2) gave rise to large proportions of Os(IV) and Os(III) species in addition to Os(VI) compounds. Egg phosphatidylcholine likewise produced a mixture of Os(VI), Os(IV), and Os(III), but dipalmitoyl phosphatidylcholine failed to give significant amounts of osmium containing products under identical conditions. Glutaraldehyde gave a mixture of compounds with the same osmium oxidation states when allowed to react with aqueous osmium tetroxide. Unfixed and glutaraldehyde-fixed erythrocyte ghosts also produced mixtures of Ss(VI), Os(IV) and Os(III) under conditions identical to those of normal tissue processing. Additionally, the mixture of adducts initially formed by treatment with osmium tetroxide was further reduced by dehydration of the tissue with ethanol, rpesulting in a final mixture which was 50-60% Os(III). The results support a scheme for the reaction os osmium tetroxide with tissues in which the initial reaction site is the double bonds of unsaturated lipids to form Os(VI) derivatives. Subsequent hydrolysis and further reduction yield complexes of Os(IV) and Os(III). A mixture of these three states is present in membrane specimens during microscopic observation. Os(VI) and Os(IV) could be present as osmate esters and osmium dioxide, respectively; Os(III) could be present as an oxo- or amino complex(es). The photoelectron spectrum of intact erythrocyte ghosts can be synthesized from the spectra of phospholipid and cholesterol only, suggesting the predominance of the reaction with lipids in the fixation process.  相似文献   
10.
Generation of the amyloid peptide through proteolytic processing of the amyloid precursor protein by beta- and gamma-secretases is central to the etiology of Alzheimer's disease. beta-secretase, known more widely as the beta-site amyloid precursor protein cleaving enzyme 1 (BACE1), has been identified as a transmembrane aspartic proteinase, and its ectodomain has been reported to be cleaved and secreted from cells in a soluble form. The extracellular domains of many diverse proteins are known to be cleaved and secreted from cells by a process known as ectodomain shedding. Here we confirm that the ectodomain of BACE1 is secreted from cells and that this processing is up-regulated by agents that activate protein kinase C. A metalloproteinase is involved in the cleavage of BACE1 as hydroxamic acid-based metalloproteinase inhibitors abolish the release of shed BACE1. Using potent and selective inhibitors, we demonstrate that ADAM10 is a strong candidate for the BACE1 sheddase. In addition, we show that the BACE1 sheddase is distinct from alpha-secretase and, importantly, that inhibition of BACE1 shedding does not influence amyloid precursor protein processing at the beta-site.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号