首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
  2019年   1篇
  2010年   1篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
Curcumin exhibits antioxidant properties in normal cells where the uptake is low, unlike in tumor cells where uptake is high and curcumin increases reactive oxygen species (ROS) production and cell death. Mitochondria are the main source and primary target of cellular ROS. We hypothesized that curcumin would regulate cellular redox status and mitochondrial function, depending on cell sensitivity and/or curcumin concentration in normal cells. We examined the differences between low and high concentrations of curcumin, with specific attention focused on ROS levels, mitochondrial function, and cell viability in mouse C2C12 myoblast under normal and simulated conditions of diabetes. Cells incubated with high concentrations of curcumin (10–50 μM) resulted in decreased cell viability and sustained robust increases in ROS levels. Mechanistic studies showed that increased ROS levels in cells incubated with 20 μM curcumin induced opening of mitochondrial permeability transition pores and subsequent release of cytochrome c, activation of caspases 9 and 3/7, and apoptotic cell death. Low concentrations of curcumin (1–5 μM) did not affect cell viability, but induced a mild increase in ROS levels, which peaked at 2 hr after the treatment. Incubation with 5 μM curcumin also induced ROS-dependent increases in mitochondrial mass and membrane potential. Finally, pretreatment with 5 μM curcumin prevented high glucose-induced oxidative cell injury. Our study suggests that mitochondria respond differentially depending on curcumin concentration-dependent induction of ROS. The end result is either cell protection or death. Curcumin may be an effective therapeutic target for diabetes and other mitochondrial diseases when used in low concentrations.  相似文献   
2.
3.
Cyanobacteria are able to survive in various extreme environments via the production of organic compounds known as compatible solutes. In particular, cyanobacteria are capable of inhabiting hypersaline environments such as those found in intertidal regions. Cyanobacteria in these environments must possess regulatory mechanisms for surviving the changing osmotic pressure as a result of desiccation, rainfall and tidal fluxes. The objective of this study was to determine the compatible solutes that are accumulated by cyanobacteria from hypersaline regions, and specifically, the stromatolite ecosystems of Shark Bay, Western Australia. Previously, the cyanobacterial populations associated with these stromatolites were characterized in two separate studies. Compatible solutes were extracted from isolated cyanobacteria here and identified by nuclear magnetic resonance. As the media of isolation contained no complex carbon source, the solutes accumulated were likely synthesized by the cyanobacteria. The data indicate that from this one habitat taxonomically distinct cyanobacteria exposed to varying salinities accumulate a range of known compatible solutes. In addition, taxonomically similar cyanobacteria do not necessarily accumulate the same compatible solutes. Glucosylglycerol, a compatible solute unique to marine cyanobacteria was not detected; however, various saccharides, glycine betaine, and trimethylamine-N-oxide were identified as the predominant solutes. We conclude that the cyanobacterial communities from these hypersaline stromatolites are likely to possess more complex mechanisms of adaptation to osmotic stress than previously thought. The characterization of osmoregulatory properties of stromatolite microorganisms provides further insight into how life can thrive in such extreme environments.  相似文献   
4.
The cyanobacterial communities associated with stromatolites surviving in extreme habitats are a potentially rich source of bioactive secondary metabolites. We screened for the potential for production of bioactive metabolites in diverse species of cyanobacteria isolated from stromatolites in Hamelin Pool, Shark Bay, Australia. Using degenerate primer sets, putative peptide synthetase and polyketide synthase genes were detected from strains of Symploca, Leptolyngybya, Microcoleus, Pleuorocapsa, and Plectonema sp. Sequence analysis indicates the enzymes encoded by these genes may be responsible for the production of different secondary metabolites, such as hepatotoxins and antibiotics. Computer modelling was also conducted to predict the putative amino acid recognised by the unknown adenylation domain in the NRPS sequences. Mass spectral analysis also allowed the putative identification of the cyclic peptides cyanopeptolin S and 21-bromo-oscillatoxin A in two of the isolates. This is the first time evidence of secondary metabolite production has been shown in stromatolite-associated microorganisms.  相似文献   
5.
Stromatolites have been present on Earth, at various levels of distribution and diversity, for more than 3 billion years. Today, the best examples of stromatolites forming in hypersaline marine environments are in Hamelin Pool at Shark Bay, Western Australia. Despite their evolutionary significance, little is known about their associated microbial communities. Using a polyphasic approach of culture-dependent and culture-independent methods, we report the discovery of a wide range of microorganisms associated with these biosedimentary structures. There are no comparable reports combining these methodologies in the survey of cyanobacteria, bacteria, and archaea in marine stromatolites. The community was characterized by organisms of the cyanobacterial genera Synechococcus, Xenococcus, Microcoleus, Leptolyngbya, Plectonema, Symploca, Cyanothece, Pleurocapsa and Nostoc. We also report the discovery of potentially free-living Prochloron. The other eubacterial isolates and clones clustered into seven phylogenetic groups: OP9, OP10, Marine A group, Proteobacteria, Low G+C Gram-positive, Planctomycetes and Acidobacteria. We also demonstrate the presence of sequences corresponding to members of halophilic archaea of the divisions Euryarchaeota and Crenarchaeota and methanogenic archaea of the order Methanosarcinales. This is the first report of such archaeal diversity from this environment. This study provides a better understanding of the microbial community associated with these living rocks.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号