首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   82篇
  免费   4篇
  2023年   1篇
  2022年   4篇
  2021年   7篇
  2020年   1篇
  2019年   3篇
  2018年   6篇
  2017年   2篇
  2016年   3篇
  2015年   5篇
  2014年   4篇
  2013年   9篇
  2012年   7篇
  2011年   25篇
  2010年   1篇
  2009年   1篇
  2008年   2篇
  2005年   2篇
  1999年   1篇
  1996年   1篇
  1993年   1篇
排序方式: 共有86条查询结果,搜索用时 31 毫秒
1.
2.
Glasshouse experiment was conducted to assess the impact of green chopped leaves of four test plants (Lantana camara, Ficus virens, Kigelia pinnata and Ficus bengalensis) and two nematicides (Phorate and Carbofuran) on the plant growth parameters of tomato cv. K25 and on the root-knot development. Results revealed that all the tested treatments significantly (p = 0.05) improved plant growth parameters and reduced root-knot development compared to control. Among the tested organic additives, chopped green leaves of Lantana camara added to soil gave the highest enhancement in plant growth parameters, including plant height, fresh and dry weight, number of fruits and fruit weight with the values of 94.2 cm, 106.8 g, 31.6 g, 7.2 and 153.3 g respectively, as well as a greater reduction of Meloidogyne javanica reproduction and development but exhibiting a lower response compared to nematicides. There was also significant reduction in root-knot development in tomato plants growing in other organic additive amended soil.  相似文献   
3.
Zinc oxide (ZnO) nanostructures have been commonly studied for electronic purposes due to their unique piezoelectric and catalytic properties; however, recently, they have been also exploited for biomedical applications. The purpose of this study was to fabricate ZnO-doped poly(urethane) (PU) nanocomposite via one-step electrospinning technique. The utilized nanocomposite was prepared by using colloidal gel composed of ZnO and PU, and the obtained mats were vacuum dried at 60 °C overnight. The physicochemical characterization of as-spun composite nanofibers was carried out by X-ray diffraction pattern, field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, electron probe microanalysis, and transmission electron microscopy, whereas the thermal behavior was analyzed by thermogravimetric analysis. The viability, attachment, and proliferation of NIH 3T3 mouse fibroblast cells on the ZnO/PU composite nanofibers were analyzed by in vitro cell compatibility test. The morphological features of the cells attached on nanofibers were examined by Bio-SEM. We conclude that the electrospun nanofibrous scaffolds with unique spider nets had good biocompatibility. Cytotoxicity experiments indicated that the mouse fibroblasts could attach to the nanocomposite after being cultured. Thus, the current work demonstrates that the as-synthesized ZnO/PU hybrid nanofibers represent a promising biomaterial to be exploited for various tissue engineering applications.  相似文献   
4.
Biofabricated metal nanoparticles are generally biocompatible, inexpensive, and ecofriendly, therefore, are used preferably in industries, medical and material science research. Considering the importance of biofabricated materials, we isolated, characterized and identified a novel bacterial strain OS4 of Stenotrophomonas maltophilia (GenBank: JN247637.1). At neutral pH, this Gram negative bacterial strain significantly reduced hexavalent chromium, an important heavy metal contaminant found in the tannery effluents and minings. Subsequently, even at room temperature the supernatant of log phase grown culture of strain OS4 also reduced silver nitrate (AgNO3) to generate nanoparticles (AgNPs). These AgNPs were further characterized by UV–visible, Nanophox particle size analyzer, XRD, SEM and FTIR. As evident from the FTIR data, plausibly the protein components of supernatant caused the reduction of AgNO3. The cuboid and homogenous AgNPs showed a characteristic UV-visible peak at 428 nm with average size of ∼93 nm. The XRD spectra exhibited the characteristic Bragg peaks of 111, 200, 220 and 311 facets of the face centred cubic symmetry of nanoparticles suggesting that these nanoparticles were crystalline in nature. From the nanoparticle release kinetics data, the rapid release of AgNPs was correlated with the particle size and increasing surface area of the nanoparticles. A highly significant antimicrobial activity against medically important bacteria by the biofabricated AgNPs was also revealed as decline in growth of Staphylococcus aureus (91%), Escherichia coli (69%) and Serratia marcescens (66%) substantially. Additionally, different cytotoxic assays showed no toxicity of AgNPs to liver function, RBCs, splenocytes and HeLa cells, hence these particles were safe to use. Therefore, this novel bacterial strain OS4 is likely to provide broad spectrum benefits for curing chromium polluted sites, for biofabrication of AgNPs and ultimately in the nanoparticle based drug formulation for the treatment of infectious diseases.  相似文献   
5.
6.

Myzus persicae is a devastating pest affecting potato production. Intron-containing hairpin RNA (ihpRNA) silenced the odorant-binding protein 8 (OBP8) for enhanced protection against Myzus persicae in potatoes. OBP8 was isolated from M. persicae, sequenced, with the allotment of GenBank ID. ERNAi was used to design siRNA targets from OBP8 with no off-targets. Multiple Sequence Alignment show M. persicae OBP8 resemblance with Acyrthosiphon pisum, Rhopalosiphum maidis, Aphis fabae, and Sitobion avenae. dsRNA-OBP8 (7 µg/µL) oral feeding resulted in a 69% mortality, and 58% OBP8 reduced expression 8D post-feeding compared to control. Golden Gate cloning is used for RNA interference taking advantage of type IIs restriction enzyme Eco31I. ihpRNA-OBP8 introduced by agroinfiltration in Solanum tuberosum. Transgenic S. tuberosum fed Myzus show 57.6% mortality and 49% reduction in OBP8 expression 8D post-feeding, compared to control. This work proves OBP8 as promising ihpRNA targets in potato and related crops for whom Myzus is a destructive pest.

  相似文献   
7.
16-Dehydropregnenolone undergoes a smooth annulation with propan-1-amine and aromatic aldehydes. Several amine derivatives of 16- dehydropregnenolone were synthesized and evaluated as inhibitors of DPP-IV. The structures of compounds were confirmed by 1H, 13C, NMR and mass spectral analysis. Among 17 compounds evaluated only five compounds 1, 9, 13, 15 and 16 demonstrated significant inhibition of DPP. This study suggest that introduction of appropriate substituents in the 16-dehydropregnenolone plays an important role in DPP-IV inhibitory activity.  相似文献   
8.
Here we report that myeloid cells differentiating along the monocyte/macrophage lineage down-regulate the ST6Gal-I sialyltransferase via a protein kinase C/Ras/ERK signaling cascade. In consequence, the beta1 integrin subunit becomes hyposialylated, which stimulates the ligand binding activity of alpha5beta1 fibronectin receptors. Pharmacologic inhibitors of protein kinase C, Ras, and MEK, but not phosphoinositide 3-kinase, block ST6Gal-I down-regulation, integrin hyposialylation, and fibronectin binding. In contrast, constitutively active MEK stimulates these same events, indicating that ERK is both a necessary and sufficient activator of hyposialylation-dependent integrin activation. Consistent with the enhanced activity of hyposialylated cell surface integrins, purified alpha5beta1 receptors bind fibronectin more strongly upon enzymatic desialylation, an effect completely reversed by resialylation of these integrins with recombinant ST6Gal-I. Finally, we have mapped the N-glycosylation sites on the beta1 integrin to better understand the potential effects of differential sialylation on integrin structure/function. Notably, there are three N-glycosylated sites within the beta1 I-like domain, a region that plays a crucial role in ligand binding. Our collective results suggest that variant sialylation, induced by a specific signaling cascade, mediates the sustained increase in cell adhesiveness associated with monocytic differentiation.  相似文献   
9.
Common bean is a nutrient‐dense legume crop serving as a source of food for millions of people. Characterization of unexplored common bean germplasm to unlock the phenotypic and genetic variations is still needed to explore the breeding potential of this crop. The current study aimed to dissect the genetic basis having association for days to flowering (DF). A total of 188 common bean accessions collected from 19 provinces of Turkey were used as plant material under five environments and two locations. Analysis of variance (ANOVA) revealed that genotypes and genotype by environment interaction have significant effects on DF. A total of 10 most stable accessions were evaluated from stability analysis. Overall maximum (75) and minimum (54) DF were observed for Hakkari-51 and Mus-46 accessions, respectively. The implemented constellation plot divided studied germplasm according to their DF and growth habit. A total of 7900 DArTseq markers were used for association analysis. Mixed linear model using the Q + K Model resulted a total of 18 DArTseq markers from five environments. DArT-8668385 marker identified in Bolu during 2016 was also associated with DF in Sivas during 2017. Combined data of five years resulted a total of four markers (DArT-22346534, DArT-3369768, DArT-3374613, and DArT-3370801) having significant association ( p  <  0.01 ) for DF. DArT-22346534 present on Pv 08 accounted a maximum of 9.89% variation to the studied trait. A total of four putative candidate genes were predicted from sequences reflecting homology to identified four DArTseq markers. We envisage that exploitation of identified DArTseq markers will hopefully beneficial for the development of new common bean varieties having better adaptation ability to changing climatic conditions.Supplementary InformationThe online version contains supplementary material available at 10.1007/s12298-021-01029-8.  相似文献   
10.
We tested, in an olfactometer, whether or not Tribolium castaneum Herbst (Coleoptera: Tenebrionidae) responds preferentially to the volatiles that emanate from the fungi associated with cotton [Gossypium hirsutum L. (Malvaceae)] seed over those that emanate from cereals, because cereals are usually portrayed as the primary resources of these beetles. Pairwise comparisons were conducted between cotton seed, wheat (Triticum aestivum L.), and sorghum [Sorghum bicolor (L.) Moench] (both Poaceae); volatiles were tested from intact seeds and from both water and ethanol extracts. The results demonstrate that T. castaneum is attracted more strongly to cotton seeds with its lint contaminated with fungi, than to the conventional resources of this species (i.e., wheat and sorghum). Further tests prove that it is the fungus on the lint that produces the active volatiles, because the beetles did not respond to sterilized cotton lint (i.e., without the fungi typically associated with it when cotton seed is stored). Tests with five fungal cultures (each representing an unidentified species that was isolated from the field‐collected cotton lint) were variable across the cultures, with only one of them being significantly attractive to the beetles. The others were not attractive and one may even have repulsed the beetles. The results are consistent with the beetles having a strong ecological association with fungi and suggest it would be worth investigating the ecology of T. castaneum from this perspective.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号