首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   118篇
  免费   6篇
  2023年   2篇
  2022年   2篇
  2021年   5篇
  2020年   3篇
  2019年   9篇
  2018年   3篇
  2017年   3篇
  2016年   3篇
  2015年   2篇
  2014年   5篇
  2013年   4篇
  2012年   5篇
  2011年   7篇
  2010年   5篇
  2009年   4篇
  2008年   9篇
  2007年   9篇
  2006年   2篇
  2005年   5篇
  2004年   11篇
  2003年   5篇
  2002年   8篇
  2001年   2篇
  2000年   6篇
  1999年   1篇
  1998年   1篇
  1992年   3篇
排序方式: 共有124条查询结果,搜索用时 78 毫秒
1.
Protein C activation is catalyzed on endothelium by a complex between thrombin and thrombomodulin. Ca2+ stimulates protein C activation in the presence, and inhibits in the absence, of thrombomodulin. Protein C has Asp residues at the P3 and P3' positions relative to the scissile bond at Arg169-Leu. To determine the contribution of these residues to the Ca2+ effect on activation, we have expressed human 4-carboxyglutamic acid (Gla)-domainless protein C and 3 mutants with Asp-->Gly substitutions at P3, P3', and both positions. Ca2+ interaction with the protein C derivatives was monitored by changes in intrinsic fluorescence, and the Ca2+ dependence of activation by thrombin and a complex of thrombin-thrombomodulin with a soluble thrombomodulin derivative (the fourth through sixth epidermal growth factor domains). The affinity for Ca2+ of the mutants was reduced 3-6-fold, which was reflected by a comparable change in the Ca2+ concentration required for the half-maximal rate of activation by the thrombin-thrombomodulin complex. However, Ca2+ no longer effectively inhibited activation of the mutants by thrombin alone. We conclude that 1) the Asp residues play a specific role in the Ca(2+)-dependent inhibition of protein C activation by thrombin; 2) these mutations alter the affinity of Ca2+ for the high affinity binding site; and 3) the Asp residues in the P3 and P3' sites do not contribute in a positive fashion to rapid activation by the thrombin-thrombomodulin complex.  相似文献   
2.
The use of bacterial signal peptides to target recombinant mammalian proteins to the periplasmic space of Escherichia coli (to promote proper disulfide bond formation) has met with variable success. We report the design and use of a bacterial expression vector to direct recombinant fusion proteins to the periplasmic space of E. coli: it contains the signal peptide from the pelB gene of Erwinia carotovora linked to a small peptide epitope for an unusual calcium-dependent antibody (HPC4). HPC4 binds to the epitope in a Ca(2+)-dependent manner, but the epitope itself does not bind Ca2+. We have used this system to express a biologically active, soluble form of tissue factor, the protein responsible for triggering the blood clotting cascade. Soluble tissue factor was secreted into the culture medium at 1-2 mg/liter, from which it could be readily purified using immobilized HPC4 antibody. The HPC4 epitope could be removed by digestion with thrombin or factor Xa, although a free amino terminus was not required for function since soluble tissue factor was equally active with the epitope still in place. This vector/epitope system permits large-scale expression and purification of recombinant soluble tissue factor and should be generally applicable to the isolation of other recombinant proteins. Furthermore, the epitope confers Ca(2+)-dependent binding of the fusion protein to HPC4 antibody while avoiding the creation of a new metal binding site on the fusion protein itself. Tb3+ can bind in this Ca2+ site near Trp, allowing this site to serve as a means of attaching a fluorescent probe to tissue factor.  相似文献   
3.
Nowadays, increased use of nanomaterials in industry and biomedicine poses potential risks to human health and the environment. Studying their possible toxicological effects is therefore of great significance. The present investigation was designed to examine the status of oxidative stress induced by nanoparticles (NPs) of ferric oxide (Fe2O 3) and titanium oxide (TiO 2) with their micro-sized counterpart on mouse lung and bone marrow–derived normal tissue cells. We assessed the induction of oxidative stress by measuring its indicators such as antioxidant scavenging activity of superoxide dismutase and catalase as well as malondialdehyde concentration. Moreover, colony formation of bone marrow cells was assayed following induction with colony stimulating factor (CSF) from lung cells. NPs had a more potent stimulatory effect on the oxidative stress status than their micron-sized counterparts. In addition, the highest level of oxidative stress derived from TiO 2 NPs was observed in both tissue types. Cotreatment with NPs and the antioxidant α-tocopherol reduced antioxidant activities and membrane lipid peroxidation (LPO) in the lung cells, but increased CSF-induced colony formation activity of bone marrow cells, suggesting that oxidative stress may be the cause of the cytotoxic effects of NPs. It is concluded that free radicals generated following exposure to NPs resulted in significant oxidative stress in mouse cells, indicated by increased LPO and antioxidant enzyme activity and decreased colony formation.  相似文献   
4.
Mimicking compositional and constructional features of the extracellular matrix(ECM)is an effective parameter in improving the biological response of biomateria...  相似文献   
5.
The autolysis loop (residues 143-154 in chymotrypsinogen numbering) plays a pivotal role in determining the macromolecular substrate and inhibitor specificity of coagulation proteases. This loop in factor IXa (FIXa) has 3 basic residues (Arg143, Lys147, and Arg150) whose contribution to the protease specificity of factor IXa has not been studied. Here, we substituted these residues individually with Ala in Gla-domainless forms of recombinant factor IX expressed in mammalian cells. All mutants exhibited normal amidolytic activities toward a FIXa-specific chromogenic substrate. However, Arg143 and Lys147 mutants showed a approximately 3- to 6-fold impairment in FX activation, whereas the Arg150 mutant activated factor X normally both in the absence and presence of factor VIIIa. By contrast, Arg143 and Lys147 mutants reacted normally with antithrombin (AT) in both the absence and presence of the cofactor, heparin. However, the reactivity of the Arg150 mutant with AT was impaired 6.6-fold in the absence of heparin and 33- to 70-fold in the presence of pentasaccharide and full-length heparins. These results suggest that Arg143 and Lys147 of the autolysis loop are recognition sites for FX independent of factor VIIIa, and Arg150 is a specific recognition site for AT that can effectively interact with AT only if the serpin is in the heparin-activated conformation.  相似文献   
6.
Manithody C  Yang L  Rezaie AR 《Biochemistry》2002,41(21):6780-6788
The autolysis loop of factor Xa (fXa) has four basic residues (Arg(143), Lys(147), Arg(150), and Arg(154)) whose contribution to protease specificity of fXa has not been examined. Here, we substituted these basic residues individually with Ala in the fX cDNA and expressed them in mammalian cells using a novel expression/purification vector system. Following purification to homogeneity and activation by the factor X activator from Russell viper venom, the mutants were characterized with respect to their ability to assemble into the prothrombinase complex to activate prothrombin and interact with target plasma fXa inhibitors, tissue factor pathway inhibitor (TFPI) and antithrombin. We show that all mutants interacted with factor Va with normal affinities and exhibited wild-type-like prothrombinase activities toward prothrombin. Lys(147) and Arg(154) mutants were inhibited by TFPI approximately 2-fold slower than wild type; however, both Arg(143) and Arg(150) mutants were inhibited normally by the inhibitor. The reactivities of Arg(143) and Lys(147) mutants were improved approximately 2-fold with antithrombin in the absence but not in the presence of heparin cofactors. On the other hand, the pentasaccharide-catalyzed reactivity of antithrombin with the Arg(150) mutant was impaired by an order of magnitude. These results suggest that Arg(150) of the autolysis loop may specifically interact with the activated conformation of antithrombin.  相似文献   
7.
In the process of characterizing the Na(+)-binding properties of factor Xa, a specific inhibition of this enzyme by quaternary amines was identified, consistent with previous observations. The binding occurs with K(i) in the low millimolar range, with trimethylphenylammonium (TMPA) showing the highest specificity. Binding of TMPA inhibits substrate hydrolysis in a competitive manner, does not inhibit the binding of p-aminobenzamidine to the S1 pocket, and is positively linked to Na(+) binding. Inhibition by TMPA is also seen in thrombin and tissue plasminogen activator (tPA), though to a lesser extent compared to factor Xa. Computer modeling using the crystal structure of factor Xa suggests that TMPA binds to the S2/S3 specificity sites, with its hydrophobic moiety making van der Waals interactions with the side chains of Y99, F174, and W215, and the charged amine coupling electrostatically with the carboxylates of E97. Site-directed mutagenesis of factor Xa, thrombin, and tPA confirms the predictions drawn by docking calculations and reveal a dominant role for residue Y99. Binding of TMPA to factor Xa is drastically (25-fold) reduced by the Y99T replacement. Likewise, the Y99L substitution compromises binding of TMPA to tPA. On the other hand, the affinity of TMPA is enhanced 4-fold in thrombin with the substitution L99Y. The identification of a binding site for quaternary amines in factor Xa has a bearing on the rational design of selective inhibitors of this clotting enzyme.  相似文献   
8.
Rezaie AR  He X 《Biochemistry》2000,39(7):1817-1825
The nature of residue 225 on a consensus loop in serine proteases determines whether a protease can bind Na(+). Serine proteases with a Pro at this position are unable to bind Na(+), but those with a Tyr or Phe can bind Na(+). Factor Xa (FXa), the serine protease of the prothrombinase complex, contains a Tyr at this position. Na(+) is also known to stimulate the amidolytic activity of FXa toward cleavage of small synthetic substrates, but the role of Na(+) in the prothrombinase complex has not been investigated. In this study, we engineered a Gla-domainless form of FX (GDFX) in which residue Tyr(225) was replaced with a Pro. We found that Na(+) stimulated the cleavage rate of chromogenic substrates by FXa or GDFXa approximately 8-24-fold with apparent dissociation constants [K(d(app))] of 37 and 182 mM in the presence and absence of Ca(2+), respectively. In contrast, Na(+) minimally affected the cleavage rate of these substrates by the mutant, and no K(d(app)) for Na(+) binding to the mutant could be estimated. Unlike the wild-type enzyme, the reactivity of the mutant with antithrombin was independent of Na(+) and impaired approximately 32-fold. Ca(2+) improved the reactivity of the mutant with antithrombin approximately 5-fold. Affinity of the mutant for binding to factor Va was weakened and its ability to activate prothrombin was severely impaired. Further studies with the wild-type prothrombinase complex revealed that FXa binds to factor Va with a similar K(d(app)) of 1. 1-1.8 nM in the presence of Na(+), K(+), Li(+), Ch(+), and Tris(+) and that the catalytic efficiency of prothrombinase is enhanced less than 1.5-fold by the specific effect of Na(+) in the reaction buffer. These results suggest that (1) the loop including residue 225 (225-loop) is a Na(+) binding site in FXa, (2) the Na(+)- and Ca(2+)-binding loops of FXa are allosterically linked, and (3) the Tyr conformer of the 225-loop is critical for factor Xa function; however, both Na(+)-bound and Na(+)-free forms of factor Xa in the prothrombinase complex can efficiently activate prothrombin.  相似文献   
9.
A pentasaccharide (PS) fragment of heparin capable of activating antithrombin (AT) markedly accelerates the inhibition of factor Xa by AT, but has insignificant effect on inhibition of thrombin. For inhibition of thrombin, the bridging function of a longer polysaccharide chain is required to accelerate the reaction. To study the basis for the similar reactivity of thrombin with the native or heparin-activated conformers of AT, several residues surrounding the active site pocket of thrombin were targeted for mutagenesis study. Leu99 and Glu192, the variant residues influencing the S2 and S3 subsite specificity of thrombin were replaced with Tyr and Gln. The Tyr60a, Pro60b, Pro60c, and Trp60d residues forming part of the S2 specificity pocket were deleted from the B-insertion loop of the wild-type and Leu99/Glu192 --> Tyr/Gln thrombins. Kinetic studies indicated that the reactivities of all mutants with AT were moderately or severely impaired. Although heparin largely corrected the defect in reactivities, it also markedly elevated the stoichiometries of inhibition with the mutants. Interestingly, PS also accelerated AT inhibition of the mutants 5-68-fold, suggesting that the mutants are able to discriminate between the native and activated conformers of AT. Based on these results and the recent crystal structure determination of AT in complex with PS, a model for thrombin-AT interaction is proposed in which the S2 and S3 subsite residues of thrombin are critical for recognition of the P2 and P3 residues of AT in the native conformation. In the activated conformation, other residues are made accessible for interaction with the protease, and the similar reactivity of thrombin with the native and heparin-activated conformers of AT may be coincidental. The results further suggest that the S2 and S3 subsite residues are crucial in controlling the partitioning of the thrombin-AT intermediate into the alternative inhibitory or substrate pathways of the reaction.  相似文献   
10.
Isolates of Cryptosporidium spp. from human and animal hosts in Iran were characterized on the basis of both the 18S rRNA gene and the Laxer locus. Three Cryptosporidium species, C. hominis, C. parvum, and C. meleagridis, were recognized, and zoonotically transmitted C. parvum was the predominant species found in humans.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号