首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19篇
  免费   1篇
  2017年   1篇
  2014年   1篇
  2010年   1篇
  2008年   3篇
  2007年   1篇
  2006年   1篇
  2004年   2篇
  2001年   3篇
  2000年   2篇
  1999年   1篇
  1986年   3篇
  1976年   1篇
排序方式: 共有20条查询结果,搜索用时 15 毫秒
1.
Incontinentia pigmenti (IP), or "Bloch-Sulzberger syndrome," is an X-linked dominant disorder characterized by abnormalities of skin, teeth, hair, and eyes; skewed X-inactivation; and recurrent miscarriages of male fetuses. IP results from mutations in the gene for NF-kappaB essential modulator (NEMO), with deletion of exons 4-10 of NEMO accounting for >80% of new mutations. Male fetuses inheriting this mutation and other "null" mutations of NEMO usually die in utero. Less deleterious mutations can result in survival of males subjects, but with ectodermal dysplasia and immunodeficiency. Male patients with skin, dental, and ocular abnormalities typical of those seen in female patients with IP (without immunodeficiency) are rare. We investigated four male patients with clinical hallmarks of IP. All four were found to carry the deletion normally associated with male lethality in utero. Survival in one patient is explained by a 47,XXY karyotype and skewed X inactivation. Three other patients possess a normal 46,XY karyotype. We demonstrate that these patients have both wild-type and deleted copies of the NEMO gene and are therefore mosaic for the common mutation. Therefore, the repeat-mediated rearrangement leading to the common deletion does not require meiotic division. Hypomorphic alleles, a 47,XXY karyotype, and somatic mosaicism therefore represent three mechanisms for survival of males carrying a NEMO mutation.  相似文献   
2.
The fluoride ion is a potent and specific inhibitor of cytoplasmic pyrophosphatase (PPase). Fluoride action on yeast PPase during PP(i) hydrolysis involves rapid and slow phases, the latter being only slowly reversible [Smirnova, I. N., and Baykov, A. A. (1983) Biokhimiya 48, 1643-1653]. A similar behavior is observed during yeast PPase catalyzed PP(i) synthesis. The amount of enzyme.PP(i) complex formed from solution P(i) exhibits a rapid drop upon addition of fluoride, followed, at pH 7.2, by a slow increase to nearly 100% of the total enzyme. The slow reaction results in enzyme inactivation, which is not immediately reversed by dilution. These data show that fluoride binds to an enzyme.PP(i) intermediate during the slow phase and to an enzyme.P(i) intermediate during the rapid phase of the inhibition. In Escherichia coli PPase, the enzyme.PP(i) intermediate binds F(-) rapidly, explaining the lack of time dependence in the inhibition of this enzyme. The enzyme.PP(i) intermediate formed during PP(i) hydrolysis binds fluoride much faster (yeast PPase) or tighter (E. coli PPase) than the similar complex existing at equilibrium with P(i). It is concluded that PPase catalysis involves two enzyme.PP(i) intermediates, of which only one (immediately following PP(i) addition and predominating at acidic pH) can bind fluoride. Simulation experiments have indicated that interconversion of the enzyme.PP(i) intermediates is a partially rate-limiting step in the direction of hydrolysis and an exclusively rate-limiting step in the direction of synthesis.  相似文献   
3.
BACKGROUND: Streptococcus mutans pyrophosphatase (Sm-PPase) is a member of a relatively uncommon but widely dispersed sequence family (family II) of inorganic pyrophosphatases. A structure will answer two main questions: is it structurally similar to the family I PPases, and is the mechanism similar? RESULTS: The first family II PPase structure, that of homodimeric Sm-PPase complexed with metal and sulfate ions, has been solved by X-ray crystallography at 2.2 A resolution. The tertiary fold of Sm-PPase consists of a 189 residue alpha/beta N-terminal domain and a 114 residue mixed beta sheet C-terminal domain and bears no resemblance to family I PPase, even though the arrangement of active site ligands and the residues that bind them shows significant similarity. The preference for Mn2+ over Mg2+ in family II PPases is explained by the histidine ligands and bidentate carboxylate coordination. The active site is located at the domain interface. The C-terminal domain is hinged to the N-terminal domain and exists in both closed and open conformations. CONCLUSIONS: The active site similiarities, including a water coordinated to two metal ions, suggest that the family II PPase mechanism is "analogous" (not "homologous") to that of family I PPases. This is a remarkable example of convergent evolution. The large change in C-terminal conformation suggests that domain closure might be the mechanism by which Sm-PPase achieves specificity for pyrophosphate over other polyphosphates.  相似文献   
4.
We present a new synthesis, based on a suite of complementary approaches, of the primary production and carbon sink in forests of the 25 member states of the European Union (EU‐25) during 1990–2005. Upscaled terrestrial observations and model‐based approaches agree within 25% on the mean net primary production (NPP) of forests, i.e. 520±75 g C m?2 yr?1 over a forest area of 1.32 × 106 km2 to 1.55 × 106 km2 (EU‐25). New estimates of the mean long‐term carbon forest sink (net biome production, NBP) of EU‐25 forests amounts 75±20 g C m?2 yr?1. The ratio of NBP to NPP is 0.15±0.05. Estimates of the fate of the carbon inputs via NPP in wood harvests, forest fires, losses to lakes and rivers and heterotrophic respiration remain uncertain, which explains the considerable uncertainty of NBP. Inventory‐based assessments and assumptions suggest that 29±15% of the NBP (i.e., 22 g C m?2 yr?1) is sequestered in the forest soil, but large uncertainty remains concerning the drivers and future of the soil organic carbon. The remaining 71±15% of the NBP (i.e., 53 g C m?2 yr?1) is realized as woody biomass increments. In the EU‐25, the relatively large forest NBP is thought to be the result of a sustained difference between NPP, which increased during the past decades, and carbon losses primarily by harvest and heterotrophic respiration, which increased less over the same period.  相似文献   
5.
We have determined the DNA sequence of the two adjacent genes for the alpha and beta chains of tryptophan synthase in Pseudomonas aeruginosa, along with 34 5'-flanking and 799 3'-flanking base pairs. The gene order is trpBA as predicted from earlier genetic studies, and the two cistrons overlap by 4 bp; a ribosome binding site for the second gene is evident in the coding sequence of the first gene. We have also determined the location of three large deletions eliminating portions of each gene. A detailed comparison of the deduced P. aeruginosa amino acid sequence with those published for E. coli, Bacillus subtilis, and Saccharomyces cerevisiae shows much similarity throughout the beta and most of the alpha subunit. Most of the residues implicated by chemical modification or mutation as being critical for enzymatic activity are conserved, along with many others, suggesting that three-dimensional structure has remained largely constant during evolution. We also report the construction of a recombinant plasmid that overproduces a slightly modified alpha subunit from P. aeruginosa that can form a functionally effective multimer with normal E. coli beta 2 subunit in vivo.   相似文献   
6.
The genes for the large and small subunits of anthranilate synthase (trpE and trpG, respectively) have been cloned from Pseudomonas aeruginosa PAC174 into E. coli by R-prime formation with the broad-host- range plasmid R68.44. Sequential subcloning into plasmid vectors reduced the active Pseudomonas DNA fragment to a length of 3.1 kb. We obtained evidence that this region contains the promoter for its own expression and retains a vestigial regulatory response to tryptophan scarcity or excess.   相似文献   
7.
The role of migratory birds in the movement of the highly pathogenic (HP) avian influenza H5N1 remains a subject of debate. Testing hypotheses regarding intercontinental movement of low pathogenic avian influenza (LPAI) viruses will help evaluate the potential that wild birds could carry Asian-origin strains of HP avian influenza to North America during migration. Previous North American assessments of LPAI genetic variation have found few Asian reassortment events. Here, we present results from whole-genome analyses of LPAI isolates collected in Alaska from the northern pintail (Anas acuta), a species that migrates between North America and Asia. Phylogenetic analyses confirmed the genetic divergence between Asian and North American strains of LPAI, but also suggested inter-continental virus exchange and at a higher frequency than previously documented. In 38 isolates from Alaska, nearly half (44.7%) had at least one gene segment more closely related to Asian than to North American strains of LPAI. Additionally, sequences of several Asian LPAI isolates from GenBank clustered more closely with North American northern pintail isolates than with other Asian origin viruses. Our data support the role of wild birds in the intercontinental transfer of influenza viruses, and reveal a higher degree of transfer in Alaska than elsewhere in North America.  相似文献   
8.
9.
The highly conserved picornavirus 2C proteins, thought to be involved in genome replication, contain three motifs found in NTPases/helicases of superfamily III. We report that human parechovirus 1 2C displays Mg2+-dependent ATP diphosphohydrolase activity in vitro, whereas other nucleoside triphosphates are not substrates for the hydrolysis. We also found that the 2C protein has an enzymatic activity that converts AMP to a corresponding diphosphate using ADP or ATP as a phosphate donor. In addition, we observed that ATP hydrolysis results in 2C autophosphorylation. These findings indicate that the parechovirus 2C protein has enzymatic activities, which may contribute to several functions in the viral replication cycle.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号