首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
  2003年   1篇
  1996年   1篇
  1991年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
1. The extent of spatial and temporal variation of microbial respiration was determined in a first-order, sand-bottomed, blackwater stream on the coastal plain of south-eastern Virginia, U.S.A.
2. Annual mean respiration rates (as g O2 m–3 h–1) differed significantly among substrata: leaf litter, 12.9; woody debris, 2.4; surface sediment, 0.8; hyporheic sediment, 0.4; water column, 0.003. Rates associated with wood were higher than those with leaves when expressed per unit surface area.
3. Highest respiration rates on leaves, wood and in the water column occurred during the summer, whereas rates in the sediments were greatest during the late autumn and winter. Water temperature, as well as particulate organic matter and nitrogen content of the substrata, was correlated positively with respiration rates.
4. A stepwise multiple regression showed that temperature and nitrogen content together explained 88% of the variation in respiration rates of leaves and wood. In contrast, particulate organic matter content and nitrogen content explained 89–90% of the variation in respiration in the sediments. Although water temperature was a significant factor in the sediment multiple regressions, its addition as an independent variable improved the regression models only slightly.
5. Annual mean respiration in the stream channel, based on the proportional amount of respiration occurring associated with each type of substratum during each month, was 1.1 kg O2 m–2 yr–1. Seventy per cent of respiration in the stream occurred in the hyporheic zone, 8–13% occurred in the surface sediment, leaf litter or woody debris, and < 1% occurred in the water column. Approximately 16% of total detritus, or 40% of non-woody detritus, stored in the stream during the year was lost to microbial respiration.  相似文献   
2.
1. The extent of spatial and temporal variation of microbial respiration was determined in a first-order, sand-bottomed, blackwater stream on the coastal plain of south-eastern Virginia, U.S.A.
2. Annual mean respiration rates (as g O2 m–3 h–1) differed significantly among substrata: leaf litter, 12.9; woody debris, 2.4; surface sediment, 0.8; hyporheic sediment, 0.4; water column, 0.003. Rates associated with wood were higher than those with leaves when expressed per unit surface area.
3. Highest respiration rates on leaves, wood and in the water column occurred during the summer, whereas rates in the sediments were greatest during the late autumn and winter. Water temperature, as well as particulate organic matter and nitrogen content of the substrata, was correlated positively with respiration rates.
4. A stepwise multiple regression showed that temperature and nitrogen content together explained 88% of the variation in respiration rates of leaves and wood. In contrast, particulate organic matter content and nitrogen content explained 89–90% of the variation in respiration in the sediments. Although water temperature was a significant factor in the sediment multiple regressions, its addition as an independent variable improved the regression models only slightly.
5. Annual mean respiration in the stream channel, based on the proportional amount of respiration occurring associated with each type of substratum during each month, was 1.1 kg O2 m–2 yr–1. Seventy per cent of respiration in the stream occurred in the hyporheic zone, 8–13% occurred in the surface sediment, leaf litter or woody debris, and < 1% occurred in the water column. Approximately 16% of total detritus, or 40% of non-woody detritus, stored in the stream during the year was lost to microbial respiration.  相似文献   
3.
FUSS  A. M.; SEDGLEY  M. 《Annals of botany》1991,68(4):377-384
Controlled hand pollinations and field observations were usedin conjunction with fluorescence and scanning electron microscopyand fruit and seed set to investigate the timing of stigma receptivity,pollen tube growth and self-incompatibility in relation to fertilityin B. coccinea. The species showed both protandry and partialself-incompatibility. Peak stigma receptivity as measured bypollen germination was recorded at 3 d after anthesis and maximumproduction of stigmatic exudate at 6 d. Pollen tubes reachedthe base of the style by 6 d after pollination. A 5 x 5 diallelexperiment was conducted and the results measured by pollentube growth. Self-pollinations generally resulted in poorertube growth than crosses and there was significant specificand general combining ability as well as reciprocal effects.Cross-pollination resulted in improved fruit set and seed toflower ratio over both selfing and open pollination. Spatiallimitations to fertility due to infructescence size were alsorecorded, but the combination of outcrossing mechanisms andspatial limitation did not entirely account for the low fertility.It is suggested that environmental conditions and the availabilityof resources may also exert an influence. Banksia coccinea R.Br., scarlet banksia, Proteaceae, pollination, stigma receptivity, pollen tube growth, self-incompatibility, breeding system, seed set  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号