首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   96篇
  免费   27篇
  2020年   1篇
  2018年   1篇
  2015年   2篇
  2014年   1篇
  2013年   2篇
  2012年   4篇
  2010年   3篇
  2009年   4篇
  2008年   1篇
  2007年   5篇
  2006年   2篇
  2005年   3篇
  2004年   3篇
  2003年   5篇
  2001年   2篇
  2000年   3篇
  1999年   2篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1992年   1篇
  1991年   3篇
  1990年   2篇
  1989年   5篇
  1988年   4篇
  1987年   2篇
  1986年   2篇
  1985年   1篇
  1984年   5篇
  1982年   1篇
  1981年   3篇
  1979年   4篇
  1978年   6篇
  1977年   1篇
  1976年   2篇
  1975年   3篇
  1974年   2篇
  1973年   4篇
  1972年   3篇
  1971年   7篇
  1970年   2篇
  1969年   2篇
  1968年   3篇
  1967年   4篇
  1966年   1篇
  1965年   1篇
  1960年   1篇
排序方式: 共有123条查询结果,搜索用时 15 毫秒
1.
2.
We have used the chemically synthesized sequence of pre-pro-parathyroid hormone and several of its analogues to test the notion that the capacity of amphipathic peptides to aggregate in membranes and form ion-permeable channels correlates with their ability to function as signal sequences for secreted proteins. We found that pre-pro-parathyroid hormone (the signal sequence and pro-region of parathyroid hormone (M)), as well as some of its analogues, forms aggregates of monomers which are ion-permeable. The ion-permeable aggregates (2–3 monomers) formed by (M) are voltage-dependent and are more permeable for cations than for anions. The compounds which formed ion channels in bilayers also acted as potential signal sequences. We conclude that the ability of peptides to form ion-permeable pathways in bilayers may be correlated to their ability to function as signal peptides.  相似文献   
3.
Human cerebrospinal fluid (CSF) inhibits the Na+/K+ pump in human red cells and the activity of purified Na+/K+-ATPase (Halperin, J. A., Shaeffer, R., Galvez, L., and Malavé, S. (1985) Proc. Natl. Acad. Sci. U.S. A. 80, 6102-6104, 1983; Halperin, J. A., Martin, A. M., and Malavé, S. (1985) Life Sci. 37, 561-566. We describe here some properties of the CSF inhibitor of the Na+/K+ pump. Active material was extracted from human CSF with 50% methanol and then concentrated and desalted by ultrafiltration. This extract inhibited, in a dose-dependent manner, the ouabain-sensitive influx of K+ into human red cells and the activity of purified Na+/K+-ATPase. Partial separation of the inhibitory activity was achieved by gel filtration and reverse-phase high performance liquid chromatography. Inhibition of both pump and enzyme was specific in that other red cell membrane transport systems or enzymes examined were not influenced by CSF extracts. Dialysis and ultrafiltration experiments indicate that the molecular weight of the inhibitor is approximately equal to 600. The inhibitory activity is sensitive to proteolytic enzymes indicating that the inhibitor might be a small peptide. In the presence of CSF extract the K0.5 for external K+ to stimulate the Na+/K+ pump increased from 1.4 to 3.1 mM, suggesting that the CSF inhibitor competes with external K+ for stimulation of the pump. We estimate that the concentration of the inhibitor in CSF might be approximately equal to 50 pg/ml, a value close to the concentration of other active peptides found in human CSF.  相似文献   
4.
Summary This paper describes experiments designed to explore interactions between human red blood cell membranes and melittin, the main component of bee venom. We found that melittin binds to human red cell membranes suspended in isotonic NaCl at room temperature, with an apparent dissociation constant of 3×10–8 m and maximum binding capacity of 1.8×107 molecules/cell. When about 1% of the melittin binding sites are occupied, cell lysis can be observed, and progressive, further increases in the fraction of the total sites occupied lead to progressively greater lysis in a graded manner. 50% lysis occurs when there are about 2×106 molecules bound to the cell membrane. For any particular extent of melittin binding, lysis proceeds rapidly during the first few minutes but then slows and stops so that no further lysis occurs after one hour of exposure of cells to melittin. The graded lysis of erythrocytes by melittin is due to complete lysis of some of the cells, since both the density and the hemoglobin content of surviving, intact cells in a suspension that has undergone graded melittin lysis are similar to the values observed in the same cells prior to the addition of melittin. The cells surviving graded melittin lysis have an increased Na and reduced K, proportional to the extent of occupation of the melittin binding sites. Like lysis, Na accumulation and K loss proceed rapidly during the first few minutes of exposure to melittin but then stops so that Na, K and hemoglobin content of the cells remain constant after the first hour. These kinetic characteristics of both lysis and cation movements suggest that melittin modifies the permeability of the red cell membrane only for the first few minutes after the start of the interaction. Direct observation of cells by Nomarsky optics revealed that they crenate, become swollen and lyse within 10 to 30 sec after these changes in morphology are first seen. Taken together, these results are consistent with the idea that melittin produces lysis of human red cells at room temperature by a colloid osmotic mechanism.  相似文献   
5.
2,4,6-Trinitro-3-methyl-phenol (trinitrocresol, H+TNC-) was found to inhibit anion and stimulate cation movements across the membranes of both high potassium (HK) and low potassium (LK) sheep red blood cells. The concentration of TNC- required to inhibit SO4 - and Cl- efflux (10-5-10-3 M) was less than that required to increase Na+ and K+ leakage (10-3-10-2 M). Both the inhibition of anion and stimulation of cation permeation were reversed if TNC- was washed from the red cells. The cation leak caused by TNC- was much greater at 0° and 37°C than at room temperature (23°C). In sheep red cells, TNC- was found to be about 20 times more effective than salicylate and about 40 times more effective than thiocyanate in increasing cation leak. TNC- also inhibited the ouabain-sensitive potassium influx.  相似文献   
6.
This paper reports the electrical properties of thick lipid membranes in the absence and presence of valinomycin. The thick lipid membranes were formed by placing a solution of sheep red cell lipids in decane between two cellophane partitions which formed the interfaces between the membrane and the two aqueous bathing solutions. The DC electrical resistance of these structures was found to be directly proportional to the reciprocal of the concentration of lipids in the decane (CL). The limiting resistance, as (CL -1) approached zero, was 3 x 108 ohm-cm2. Resistance was also found to be linearly related to membrane thickness. The limiting resistance at zero thickness was again 1–3 x 108 ohm-cm2. These data are interpreted to indicate that the DC resistance of thick lipid membranes comprises two surface resistances (RS) at each interface with the aqueous bathing solutions, and a bulk resistance (RB) of the lipid-decane solution, arranged in series. Measurements of the effect of variations of area on resistance were consistent with this interpretation. Valinomycin reduced RS but had no effect on RB. Under certain conditions, thick lipid membranes containing valinomycin behaved like highly selective K+ electrodes.  相似文献   
7.
Summary Red cells of all high-potassium-type (HK) sheep and of more than one half of all low-potassium-type (LK) sheep contained the M-antigen and were hemolyzed by iso-immune anti-M antiserum in presence of a guinea pig serum complement. It was characteristic for the hemolysis of HK red cells by the M-antiserum the all HK cells were ultimately hemolyzed at suboptimal antibody concentrations, provided the time of incubation at 37 °C was sufficiently long. Thus, the M-antigen appears to be expressed on all red cells of an individual HK sheep. The M-antibody was absorbed by HK red cells and their membranes with a high affinity, whereas M-negative LK red cells and their membranes did not bind the antibody. The ratio of the number of antibody units absorbed per cell or membrane to the number of antibody units required for lysis approached unity. The amount of antibody absorbed per membrane was unaffected by ouabain in the presence of ATP, Mg++, Na+, and K+. The M-antigen activity depends on the integrity of the red cell membrane and was not detectable after lyophilization of HK membranes or in the membrane protein solubilized by n-butanol. The major M-antibody activity was found among the high molecular weight plasma proteins and may be attributed to the 2 M globulins. Heterogeneity within the antibody fraction cannot be excluded since some hemolytic activity was detected in a chromatographic fraction containing predominantly -globulin. The relationship between the M-antigen and the Na+–K+ transport system in sheep red cell membranes is discussed.This work was presented in part at the 53rd annual meeting of the Federation of American Societies for Experimental Biology, Atlantic City, N. J. 1969.  相似文献   
8.
Lipids were obtained from high potassium (HK) and low potassium (LK) sheep red cells by sequential extraction of the erythrocytes with isopropanol-chloroform, chloroform-methanol-0.1 M KCl, and chloroform. The extract contained cholesterol and phospholipid in a molar ratio of 0.8:1.0, and less than 1% protein contaminant. Stable thin lipid membranes separating two aqueous compartments were formed from an erythrocyte lipid-hydrocarbon solution, and had an electrical resistance of ∼108 ohm-cm2 and a capacitance of 0.38–0.4 µf/cm2. From the capacitance values, membrane thickness was estimated to be 46–132 A, depending on the assumed value for the dielectric constant (2.0–4.5). Membrane voltage was recorded in the presence of ionic (NaCl and/or KCl) concentration gradients in the solutions bathing the membrane. The permeability of the membrane to Na+, K+, and Cl- (expressed as the transference number, T ion) was computed from the steady-state membrane voltage and the activity ratio of the ions in the compartments bathing the membrane. T Na and T K were approximately equal (∼0.8) and considerably greater than T Cl (∼0.2). The ionic transference numbers were independent of temperature, the hydrocarbon solvent, the osmolarity of the solutions bathing the membranes, and the cholesterol content of the membranes, over the range 21–38°C. The high degree of membrane cation selectivity was tentatively attributed to the negatively charged phospholipids (phosphatidylethanolamine and phosphatidylserine) present in the lipid extract.  相似文献   
9.
Specificity of marine microbial surface interactions.   总被引:7,自引:6,他引:1       下载免费PDF全文
The macromolecular surface components involved in intraspecific cell surface interactions of the green microalga Chlorella vulgaris and closely associated bacteria were investigated. The specific surface attachment between this alga and its associated bacteria is mediated by lectin-like macromolecules associated with the surfaces of these cells. The binding activity of these surface polymers was inhibited by specific simple sugars; this suggests the involvement of specific receptor-ligand binding sites on the interactive surfaces. Epifluorescent microscopic evaluation of bacteria-alga interactions in the presence and absence of the macromolecules that mediate these interactions showed that the glycoproteins active in these processes were specific to the microbial sources from which they were obtained. The demonstration and definition of the specificity of these interactions in mixed microbial populations may play an important role in our understanding of the dynamics of marine microbial populations in the sea.  相似文献   
10.
Outward sodium and potassium cotransport in human red cells   总被引:7,自引:0,他引:7  
Summary This paper reports some kinetic properties of Na–K cotransport in human red cells. All fluxes were measured in the presence of 10–4 M ouabain. We measured Na and K efflux from cells loaded by the PCMBS method to contain different concentrations of these ions into a medium that contained neither Na nor K (MgCl2-sucrose substitution) in the absence and presence of furosemide. Furosemide inhibited 30–60% of the total efflux depending on the internal ion concentration and the individual subject. We took the furosemide-sensitive fluxes to be a measure of Na–K cotransport. The ratio of Na to K cotransport was 1 over the entire range of internal Na and K concentrations studied. When Na was substituted for K as the only internal cation, cotransport was maximally activated when the Na and K concentrations were between 20 and 90 mmol/liter cells. The concentration of internal Na required to produce half-maximal cotransport was about 13±4 mmol/liter cells (n=4), while the comparable concentration of K was somewhat lower. The activation curve was definitely sigmoid in character, suggesting that at least two Na ions are involved in the transport process. The maximum of Na–K cotransport was about 0.5±0.15 mmol/liter cells × hr (n=5); it had a flat maximum in the medium at about pH 7.0, decreasing in both the acid and alkaline sides. furosemide-resistant effluxes were found to be linear functions of internal Na and K concentrations and to yield rate coefficients of 0.019±0.002 hr–1 and 0.014±0.002 hr–1 (n=7), respectively. These values are of the same order of magnitude expected of ions moving across phospholipid bilayers.Charge de Recherches CNRS.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号