首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   45篇
  免费   2篇
  国内免费   3篇
  2020年   1篇
  2013年   5篇
  2012年   2篇
  2011年   2篇
  2010年   2篇
  2009年   2篇
  2005年   1篇
  2004年   2篇
  2002年   2篇
  2001年   2篇
  1999年   3篇
  1998年   2篇
  1997年   3篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1991年   2篇
  1989年   3篇
  1987年   3篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1978年   2篇
  1966年   1篇
排序方式: 共有50条查询结果,搜索用时 15 毫秒
1.
The ovine oviduct was evaluated as a culture system for early bovine embryos. One- to two-cell embryos were collected from superovulated heifers killed 36 or 48 h after the onset of estrus, embedded in agar cylinders, and transferred to oviducts ligated at the uterotubal junction. After 5 d (6.5 to 7.0 d after donor estrus), embryos were recovered and evaluated for development to the late morula or blastocyst stage. In Experiment 1, 86 embryos were cultured in 10 ewes in which the onset of estrus was synchronized with that of the donors. Fifty-eight embryos (68%) were recovered; of these, 31 (53%) had continued normal development. In Experiment 2, development in ovariectomized versus intact cyclic ewes was compared. Recovery from ovariectomized ewes (26/39, 67%) did not differ from intact cyclic ewes (26/35, 74%) and the proportion developing normally also did not differ (ovariectomized: 7/26, 27%; intact cyclic: 11/26, 42%). In Experiment 3, embryo development was compared in anestrous versus ovariectomized ewes. Recovery rate (anestrous: 22/43, 51%; ovariectomized: 20/51, 39%) and the proportion developing normally (anestrous: 8/22, 37%; ovariectomized: 9/20, 45%) did not differ between treatments. Developmental competence of oviduct-cultured embryos was tested by transfer to 16 synchronous heifers, of which eight (50%) became pregnant; five delivered calves. Results indicate that the ovine oviduct provides an adequate site for the culture of early bovine embryos.  相似文献   
2.
In Exp. 1, 5-8-cell embryos from superovulated cattle were co-cultured with oviducal tissue suspended in Ham's F10 + 10% fetal calf serum (F10FCS) or in F10FCS alone. After 4 days, the proportion of embryos developing into compact morulae or blastocysts was greater (P less than 0.005) in co-culture (38/82; 46%) than in F10FCS (1/27; 4%). In Exp. 2, a solution of collagenase, trypsin, DNAse and EDTA was used to disperse oviducal tissue, which was then cultured in TCM199 + 10% fetal calf serum (M199FCS) to obtain monolayers. Embryos (1-8 cells) were then co-cultured with monolayers or in M199FCS alone. The proportion of embryos developing into compact morulae and blastocysts after 4-5 days was higher (P less than 0.005) in co-culture (15/34; 43%) than in M199FCS (1/37; 3%); mean numbers of cells/embryo were also higher (P less than 0.001) (27.70; range 2-82 in co-culture; 8.83; range 2-18 in M199FCS). In Exp. 3, embryos obtained from in-vitro maturation and fertilization were used to compare development between co-culture and medium conditioned by oviducal tissue. Initial cleavage rate (no. embryos greater than 1 cell/total) was 76% (611/807) and did not differ among treatments. After 5 days, the proportion cleaving to greater than 16 cells was higher (P less than 0.005) in co-culture (71/203; 35%) and conditioned medium (48/205; 23%) compared to M199FCS (14/203; 7%). Similarly, the proportion developing into compact morulae and blastocysts was greater (P less than 0.005) in co-culture (44/203; 22%) and conditioned medium (46/205; 22%) than in M199FCS (7/203; 3%).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
3.
Small biopsy samples are used increasingly to assess the biomarker expression for prognostic information and for monitoring therapeutic responses prior to and during neoadjuvant therapy. The issue of intratumor heterogeneity of expression of biomarkers, however, has raised questions about the validity of the assessment of biomarker expression based on limited tissue samples. We examined immunohistochemically the expression of HER-2neu (p185erbB-2), epidermal growth factor receptor (EGFR), Bcl-2, p53, and proliferating cell nuclear antigen (PCNA) in 30 breast carcinomas using archived, paraffin embedded tissue and determined the extent of intratumor heterogeneity. Each section was divided into four randomly oriented discrete regions, each containing a portion of the infiltrating carcinoma. For each tumor, the entire lesion and four regions were analyzed for the expression of these markers. Scores of both membrane and cytoplasmic staining of HER-2neu and EGFR, scores of cytoplasmic staining of Bcl-2, and scores of nuclear staining of both p53 and PCNA were recorded. The intensity of staining and the proportion of immunostained cells were determined. A semiquantitative immunoscore was calculated by determining the sum of the products of the intensity and corresponding proportion of stained tumor cells. We analyzed both invasive (IDC) and in situ (DCIS) carcinomas. The Wilcoxon signed-rank test was used for paired comparisons between overall and regional immunoscores and between overall and regional percentages of stained cells. Spearman's correlation coefficients were used to assess the level of agreement of overall biomarker expression with each of the regions. Generalized linear models were used to assess overall and pair-wise differences in the absolute values of percent changes between overall and regional expression of biomarkers. For IDCs, there were no statistically significant differences in the expression of the biomarkers in terms of either the percentage of cells staining or the immunoscores when comparing the entire tumor with each region except for the lower EGFR expression of arbitrarily selected region 1 and lower p53 expression of region 1 compared to that of the entire tumor section. For DCIS, there were no statistically significant differences in the expression of the biomarkers between the entire tumor and each region except in PCNA of region 2 compared to that of entire tumor section. Positive correlation of immunoscores was observed between the entire tumor and each region as well as across all four regions for IDC. Similar observations were noted with DCIS except for HER-2neu and PCNA. No statistically significant differences were observed in the absolute values of percent changes of biomarker expression between overall and the four regions for both DCIS and IDC. Therefore, no significant intratumor heterogeneity in the expression of HER-2neu, Bcl-2, and PCNA was observed in IDC. Minor regional variations were observed for EGFR and p53 in IDC. Similarly, no significant regional variation in the expression of markers was observed in DCIS except for PCNA.  相似文献   
4.
Eyestone WH 《Theriogenology》1999,51(2):509-517
Transgenic technology permits major modifications of phenotype by introducing subtle changes in genotype. For domestic farm species, genetic modification may be used to enhance agricultural production or to generate novel genotypes capable of producing heterologous proteins for biomedical applications. The advent of in vitro embryo production techniques has facilitated the large-scale, commercial use of transgenic technology in cattle. Accordingly, we employed in vitro-produced zygotes and embryos in an effort to generate transgenic cattle. Overall, pronuclei in 36,530 in vitro matured and fertilized zygotes were microinjected with a construct designed to express human alpha-lactalbumin in the mammary gland. Of these, 1,472 developed and were transferred to recipients, including 148 twin transfers. Initial pregnancy rate on Day 30 of gestation was 28% (374/1,324). Subsequent calving rate was 17% (226/1,324). Eighteen calves (8%) were transgenic. In vitro produced embryos were used to facilitate breeding of transgenic bulls. Frequency of transgene transmission varied from 3 to 54% between bulls, indicating varying degrees mosaicism. Embryos produced in vitro by these bulls were biopsied and screened for transgenesis prior to transfer to recipients; so far all (6/6) calves born from screened, transgenic embryos were themselves transgenic.  相似文献   
5.
Colostrum ingestion by neonatal calves is widely recognized to provide passive transfer of immunity. In this study immunoglobulin absorption from colostrum was evaluated in 54 IVF-produced calves. The IVF calves were delivered by Cesarean section on Days 275 to 277 of gestation, 24 h after the dams had been administered 30 mg dexamethasone. The calves suckled bottles or were force-fed 6 L of colostrum in the first 12 h of life. Colostrum was obtained from the first post-calving milking of recipient dams or from frozen storage reserves if dam secretion was not adequate. Immunoglobulin type G (IgG) content of both sources of colostrum was determined. Serum samples from the calves were collected at 0, 12 and 24 h of age and analyzed for IgG. Twenty dairy calves born vaginally served as the controls and were subjected to the same colostrum management protocol except that the colostrum was obtained only from frozen post-calving milk of dairy cows from the same farm. The control calves were also subjected to the same sampling protocol. The IVF group of calves ingested more IgG (P < 0.0001) and absorbed more IgG by 24 h of age (P < 0.0001) than their control group counterparts. Absorption of IgG was analyzed by comparing the g/kg body weight of IgG with serum IgG values at corresponding times after birth. Colostrum absorption efficiency was the same for both IVF and control groups of calves at 12 and 24 h of age. There was a maximum IgG dose above which additional increases in serum IgG were not realized. The slightly premature, Cesarean delivered IVF calves absorbed IgG from colostrum similarly to control calves delivered vaginally.  相似文献   
6.
The study was conducted to evaluate the effects of scrotal insulation on semen samples collected from bulls on embryonic development after IVF. Semen samples were obtained and cryopreserved from four Holstein bulls before and after a scrotal insulation period of 48 h (Day 0). Three types of samples were used for IVF: (1) semen from the test bulls collected 5 d prior to scrotal insulation (pre-insult); (2) semen from Day 13 (2-week post-insult; 2-week PI); and (3) semen from Day 20 (3-week PI). After 18 h of sperm-oocyte co-incubation, the zygotes were cultured for 8 d when a developmental score (0=degenerate, 1=2-cell embryo through 5=blastocyst) was assigned to each embryo. The post-thaw morphological evaluation of sperm samples revealed a decrease (P<0.01) in the percentages of normal spermatozoa in the 3-week PI samples in comparison with the pre-insult samples for Bulls I and III (74-22.3% and 67.7-0.5 %, respectively). The percentage of vacuolated spermatozoa increased significantly for Bull II. The cleavage and blastocyst formation rates and embryo development scores were affected (P<0.01) by the interaction of bull by sample collection time. For Bulls I and III (severe responders) the scrotal insulation effects persisted from the time of cleavage through blastocyst formation. In contrast, the cleavage and blastocyst formation rates for Bulls II and IV were unaffected, despite high percentages of vacuolated spermatozoa present in the post-insult samples for Bull II. In conclusion, the use of scrotal insulation to elevate scrotal temperature was an effective method to obtain semen samples with high percentages of abnormal spermatozoa. The decrease in embryonic development after IVF when using spermatozoa with morphological abnormalities seemed to be multifaceted and related to changes in head morphology.  相似文献   
7.
The mammalian cellular prion protein (PrP(C) ) is a highly conserved glycoprotein that may undergo conversion into a conformationally altered isoform (scrapie prion protein or PrP(Sc) ), widely believed to be the pathogenic agent of transmissible spongiform encephalopathies (TSEs). Although much is known about PrP(Sc) conversion and its role in TSEs, the normal function of PrP(C) has not been elucidated. In adult mammals, PrP(C) is most abundant in the central nervous tissue, with intermediate levels in the intestine and heart, and lower levels in the pancreas and liver. PrP(C) is expressed during neurogenesis throughout development, and it has recently been proposed that PrP(C) participates in neural cell differentiation during embryogenesis. In order to establish the developmental timing and to address the cell-specific expression of PrP(C) during mammalian development, we examined PrP(C) expression in bovine gametes and embryos through gestation Day 39. Our data revealed differential levels of Prnp mRNA at Days 4 and 18 in pre-attachment embryos. PrP(C) was detected in the developing central and peripheral nervous systems in Day-27, 32-, and -39 embryos. PrP(C) was particularly expressed in differentiated neural cells located in the marginal regions of the central nervous system, but was absent from mitotically active, periventricular areas. Moreover, a PrP(C) cell-specific pattern of expression was detected in non-nervous tissues, including liver and mesonephros, during these stages. The potential participation of PrP(C) in neural cell differentiation is supported by its specific expression in differentiated states of neurogenesis.  相似文献   
8.
9.
The host encoded cellular prion protein (PrPC) is an N-linked glycoprotein tethered to the cell membrane by a glycophosphatidylinositol (GPI) anchor. Under certain conditions, PrPC can undergo conversion into a conformationally-altered isoform (PrPSc) widely believed to be the pathogenic agent of transmissible spongiform encephalopathies (TSEs). Understanding the tissue-specific expression of PrPC is crucial considering that cells expressing high levels of PrPC bear a risk for conversion and accumulation of PrPSc. In the present study, fifteen bovine somatic tissues were analyzed for PrPC expression by quantitative western blot and immunohistochemistry. Quantitative western blot analysis revealed highest expression of PrPC in cerebellum, obex and spinal cord. Intermediate levels were detected in thymus, intestine, nerve, heart and spleen, and lower levels in lung, muscle, kidney, lymph node, skin, pancreas and liver. Immunohistochemical analysis detected intense cellular-specific PrPC staining in neurons, thymocytes and lymphocytes. PrPC was also detected in the enteric wall, pancreatic islets of langerhans, myocardium, pulmonary alveolar sacs, renal glomeruli and dermal epithelial cells. This study demonstrated the quantitatively varied, wide-spread, tissue- and cell-specific expression pattern of PrPC in bovine somatic tissues. The importance of this study is to lay the foundation for understanding the tissue-specific expression of PrPC and to consider the potential participation of more bovine tissues in the transmission of BSE infection.Key words: cellular prion protein (PrPC), protein expression, bovine somatic tissues, BSE, western blot, immunohistochemistry  相似文献   
10.
The phylum Porifera (sponges) was the first to diverge from the common ancestor of the Metazoa. In this study, six cDNAs coding for protein- serine/threonine kinases (PS/TKs) are presented; they have been isolated from libraries obtained from the demosponges Geodia cydonium and Suberites domuncula and from the calcareous sponge Sycon raphanus. Sequence alignments of the catalytic domains revealed that two major families of PS/TK, the "conventional" (Ca(2+)-dependent) protein kinase C (PKC), the cPKC subfamily, as well as the "novel" (Ca(2+)- independent) PKC (nPKC), form two separate clusters. In each cluster, the sequence from S. raphanus diverges first. To approach the question about the origin of protein-tyrosine kinases (PTK), which are found only in Metazoa, we analyzed two additional PS/TKs which have been cloned from S. domuncula: the stress-responsive protein kinase (KRSvSD) and the protein-kinase-C-related kinase (PRKvSD). The construction of the phylogenetic tree, comprising the eight PS/TKs and the PTK cloned previously from G. cydonium, revealed that the PTK derived from the branch including the KRSvSD kinase. These data facilitate the first molecular approach to elucidate the origin of metazoan PTK within the PS/TK superfamily.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号