首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   203篇
  免费   18篇
  2023年   3篇
  2022年   2篇
  2021年   4篇
  2020年   7篇
  2019年   3篇
  2018年   9篇
  2017年   6篇
  2016年   8篇
  2015年   10篇
  2014年   13篇
  2013年   11篇
  2012年   14篇
  2011年   15篇
  2010年   11篇
  2009年   10篇
  2008年   7篇
  2007年   12篇
  2006年   9篇
  2005年   7篇
  2004年   10篇
  2003年   7篇
  2002年   9篇
  2001年   4篇
  2000年   1篇
  1999年   3篇
  1998年   3篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1993年   3篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1987年   1篇
  1985年   1篇
  1984年   3篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1974年   1篇
  1941年   1篇
排序方式: 共有221条查询结果,搜索用时 15 毫秒
1.
Aim We evaluate how closely diversity patterns of endemic species of vascular plants, beetles, butterflies, molluscs and spiders are correlated with each other, and to what extent similar environmental requirements or survival in common glacial refugia and comparable dispersal limitations account for their existing congruence. Location Austria. Methods We calculated pairwise correlations among species numbers of the five taxonomic groups in 1405 cells of a 3′ × 5′ raster (c. 35 km2) using the raw data as well as the residuals of regression models that accounted for: (1) environmental variables, (2) environmental variables and the occurrence of potential refugia during the Last Glacial Maximum, or (3) environmental variables, refugia and spatial filters. Results Pairwise cross‐taxonomic group Spearman’s rank correlations in the raw data were significantly positive in most cases, but only moderate (0.3 < ρ < 0.5) to weak (ρ < 0.3) throughout. Correlations were closest between plants and beetles, plants and butterflies, and plants and snails, respectively, whereas the distribution of endemic spiders was largely uncorrelated with those of the other groups. Environmental variables explained only a moderate proportion of the variance in endemic richness patterns, and the response of individual groups to environmental gradients was only partly consistent. The inclusion of refugium locations and the spatial filters increased the goodness of model fit for all five taxonomic groups. Moreover, removing the effects of environmental conditions reduced congruence in endemic richness patterns to a lesser extent than did filtering the influence of refugium locations and spatial autocorrelation, except for spiders, which are probably the least dispersal‐limited of the five groups. Main conclusions The moderate to weak congruence of endemic richness patterns clearly limits the usefulness of a surrogacy approach for designating areas for the protection of regional endemics. On the other hand, our results suggest that dispersal limitations still shape the distributions of many endemic plant, snail, beetle and butterfly species, even at the regional scale; that is, survival in shared refugia and subsequent restricted spread retain a detectable signal in existing correlations. Concentrating conservation efforts on well‐known Pleistocene refugia hence appears to be a reasonable first step towards a strategy for protecting regional endemics of at least the less mobile invertebrate groups.  相似文献   
2.
3.
4.
Hebbian dynamics is used to derive the differential equations for the synaptic strengths in the neural circuitry of the locomotive oscillator. Initially, neural connection are random. Under a specified arborization hypothesis relating to the density of neural connections, the differential equations are shown to model the self-organization and the stability of the oscillator.  相似文献   
5.
We found that adenylate cyclase activity of human erythrocytes is potentially labile during isolation of their plasmalemma. Addition of 1 mM EGTA to solution used to remove hemoglobin from lysed cells protected activity. Human erythrocyte adenylate cyclase is minimally activated by catecholamines, in the absence or presence of exogenous guanyl nucleotide, but substantially by 5′-guanylyl imidodiphosphate or sodium fluoride and concentration-dependently by Mg2+ or Mn2+. Basal catalytic activity is an age-dependent component of the human erythrocyte; 5′-guanylyl imidodiphosphate- or fluoride-activated activities decline with cellular maturation proportionally to the decrease in basal activity.  相似文献   
6.
Abstract

Many studies describe the advantages of using hydrophobic particles on lipase immobilisation. However, many of these works neglect the effect of other variables of the supports, such as specific area and porosity, on the biocatalyst performance, and do not evaluate the influence of the hydrophobicity level of the particles on the biocatalysts’ activity as a single variable. Thus, the focus of the present work was to evaluate the effect of the hydrophobicity degree of polymeric particles on the biocatalysts’ activities, mitigating the influence of other variables. The study was divided into two steps. Firstly, distinct particles, exhibiting different composition and hydrophobicity levels, were used for the immobilization of a commercial lipase B from Candida antarctica (CAL-B). Then, distinct core-shell polymeric particles presenting different functional compounds on the surface were produced, using as comonomers styrene, divinylbenzene, 1-octene, vinylbenzoate and cardanol. Such particles were subsequently used for CAL-B immobilisation and the performance of the biocatalysts was evaluated on hydrolysis (using p-nitrophenyl laurate, as substrate) and esterification (using ethanol and oleic acid, as substrate) reactions. Based on the screening step, it was observed that for non-porous particles the correlation coefficients between the hydrophobicity level of the supports and the biocatalysts performance, for both hydrolysis and esterification reactions, were very low (0.32 and 0.45, respectively). It highlights that there was no significant correlation between these variables and that, probably, the chemical composition of the polymeric chains affects more significantly the biocatalyst performance. Then, analysing the subsequent stage, it was observed that small changes in the surface composition of the core-shell particles result in significant changes on the textural properties of the supports (specific area ranging from 1.2?m2.g?1 to 18.3?m2.g?1; and contact angles ranging from 71° (hydrophilic particles) to 92° (hydrophobic supports) when polymer films were put in contact with water). Such particles were also employed on CAL-B immobilization and it was noticed that higher correlation coefficients were achieved for hydrolysis (ρ?=?0.53) and esterification (ρ?=?0.74) reactions. Therefore, it is shown that the hydrophobicity degree of such supports starts to affect more effectively the biocatalysts performance when other textural features of the supports become more significant, such as specific area and porosity.  相似文献   
7.
The heteropentameric condensin complexes have been shown to participate in mitotic chromosome condensation and to be required for unperturbed chromatid segregation in nuclear divisions. Vertebrates have two condensin complexes, condensin I and condensin II, which contain the same structural maintenance of chromosomes (SMC) subunits SMC2 and SMC4, but differ in their composition of non–SMC subunits. While a clear biochemical and functional distinction between condensin I and condensin II has been established in vertebrates, the situation in Drosophila melanogaster is less defined. Since Drosophila lacks a clear homolog for the condensin II–specific subunit Cap-G2, the condensin I subunit Cap-G has been hypothesized to be part of both complexes. In vivo microscopy revealed that a functional Cap-G-EGFP variant shows a distinct nuclear enrichment during interphase, which is reminiscent of condensin II localization in vertebrates and contrasts with the cytoplasmic enrichment observed for the other EGFP-fused condensin I subunits. However, we show that this nuclear localization is dispensable for Cap-G chromatin association, for its assembly into the condensin I complex and, importantly, for development into a viable and fertile adult animal. Immunoprecipitation analyses and complex formation studies provide evidence that Cap-G does not associate with condensin II–specific subunits, while it can be readily detected in complexes with condensin I–specific proteins in vitro and in vivo. Mass-spectrometric analyses of proteins associated with the condensin II–specific subunit Cap-H2 not only fail to identify Cap-G but also the other known condensin II–specific homolog Cap-D3. As condensin II–specific subunits are also not found associated with SMC2, our results question the existence of a soluble condensin II complex in Drosophila.  相似文献   
8.
9.
Biomolecule-nanoparticle (NP) [or quantum-dot (QD)] hybrid systems combine the recognition and biocatalytic properties of biomolecules with the unique electronic, optical, and catalytic features of NPs and yield composite materials with new functionalities. The biomolecule-NP hybrid systems allow the development of new biosensors, the synthesis of metallic nanowires, and the fabrication of nanostructured patterns of metallic or magnetic NPs on surfaces. These advances in nanobiotechnology are exemplified by the development of amperometric glucose sensors by the electrical contacting of redox enzymes by means of AuNPs, and the design of an optical glucose sensor by the biocatalytic growth of AuNPs. The biocatalytic growth of metallic NPs is used to fabricate Au and Ag nanowires on surfaces. The fluorescence properties of semiconductor QDs are used to develop competitive maltose biosensors and to probe the biocatalytic functions of proteases. Similarly, semiconductor NPs, associated with electrodes, are used to photoactivate bioelectrocatalytic cascades while generating photocurrents.  相似文献   
10.
KNL1 is a large intrinsically disordered kinetochore (KT) protein that recruits spindle assembly checkpoint (SAC) components to mediate SAC signaling. The N-terminal region (NTR) of KNL1 possesses two activities that have been implicated in SAC silencing: microtubule (MT) binding and protein phosphatase 1 (PP1) recruitment. The NTR of Drosophila melanogaster KNL1 (Spc105) has never been shown to bind MTs or to recruit PP1. Furthermore, the phosphoregulatory mechanisms known to control SAC protein binding to KNL1 orthologues is absent in D. melanogaster. Here, these apparent discrepancies are resolved using in vitro and cell-based assays. A phosphoregulatory circuit that utilizes Aurora B kinase promotes SAC protein binding to the central disordered region of Spc105 while the NTR binds directly to MTs in vitro and recruits PP1-87B to KTs in vivo. Live-cell assays employing an optogenetic oligomerization tag and deletion/chimera mutants are used to define the interplay of MT and PP1 binding by Spc105 and the relative contributions of both activities to the kinetics of SAC satisfaction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号