首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   134篇
  免费   1篇
  135篇
  2024年   1篇
  2023年   1篇
  2022年   2篇
  2021年   2篇
  2020年   5篇
  2019年   3篇
  2018年   7篇
  2017年   3篇
  2016年   4篇
  2015年   4篇
  2014年   8篇
  2013年   7篇
  2012年   8篇
  2011年   11篇
  2010年   4篇
  2009年   6篇
  2008年   5篇
  2007年   7篇
  2006年   8篇
  2005年   7篇
  2004年   9篇
  2003年   6篇
  2002年   3篇
  1999年   1篇
  1998年   2篇
  1997年   3篇
  1996年   2篇
  1994年   1篇
  1993年   2篇
  1991年   1篇
  1988年   1篇
  1985年   1篇
排序方式: 共有135条查询结果,搜索用时 15 毫秒
1.
In this study, we used an adoptive lymphocyte transfer experiment to evaluate the ability of the P64k recombinant protein to recruit T-helper activity and induce immunologic memory response to the polysaccharide moiety in a meningococcal serogroup C conjugate vaccine. Adoptive transfer of splenocytes from mice immunized with the glycoconjugate conferred antipolysaccharide immunologic memory to naive recipient mice. The observed anamnestic immune response was characterized by more rapid kinetics, isotype switching from IgM to IgG and higher antipolysaccharide antibody titers compared with those reached in groups transferred with splenocytes from plain polysaccharide or phosphate-immunized mice. The memory response generated was also long lasting. Sera from mice transferred with cells from conjugate-immunized mice were the only protective in the infant rat passive protection assay, and also showed higher bactericidal titers. We demonstrated that priming the mice immune system with the glycoconjugate using the P64k protein as carrier induced a memory response to the polysaccharide, promoting a switch of the T-cell-independent response to a T-cell dependent one.  相似文献   
2.
Recent studies have revealed the structural and functional interactions between mitochondria, myofibrils and sarcoplasmic reticulum in cardiac cells. Direct channeling of adenosine phosphates between organelles identified in the experiments indicates that diffusion of adenosine phosphates is limited in cardiac cells due to very specific intracellular structural organization. However, the mode of diffusion restrictions and nature of the intracellular structures in creating the diffusion barriers is still unclear, and, therefore, a subject of active research. The aim of this work is to analyze the possible role of two principally different modes of restriction distribution for adenosine phosphates (a) the uniform diffusion restriction and (b) the localized diffusion limitation in the vicinity of mitochondria, by fitting the experimental data with the mathematical model. The reaction-diffusion model of compartmentalized energy transfer was used to analyze the data obtained from the experiments with the skinned muscle fibers, which described the following processes: mitochondrial respiration rate dependency on exogenous ADP and ATP concentrations; inhibition of endogenous ADP-stimulated respiration by pyruvate kinase (PK) and phosphoenolpyruvate (PEP) system; kinetics of oxygen consumption stabilization after addition of 2 mM MgATP or MgADP; ATPase activity with inhibited mitochondrial respiration; and buildup of MgADP concentration in the medium after addition of MgATP. The analysis revealed that only the second mechanism considered--localization of diffusion restrictions--is able to account for the experimental data. In the case of uniform diffusion restrictions, the model solution was in agreement only with two measurements: the respiration rate as a function of ADP or ATP concentrations and inhibition of respiration by PK + PEP. It was concluded that intracellular diffusion restrictions for adenosine phosphates are not distributed uniformly, but rather are localized in certain compartments of the cardiac cells.  相似文献   
3.
In our present studies, the recovery of photosynthetic activity after rehydration was demonstrated. We measured chlorophyll fluorescence, CO2 gas exchange and the pigment composition in the previously long-term air-dried cryptogamic inselberg crusts collected from two tropical areas. The cryptobiotic crusts were collected from different localities on similar ecological and climatic conditions from extreme habitats of inselbergs (outcrops). These inselbergs are characterized by a dry microclimate and are covered by scarce soil. We found that the ecophysiological responses of both cryptogamic inselberg crusts showed an extremely high degree of desiccation-tolerance due to the fast and full recovery during rehydration. The photosynthetic activity of the cryptobiotic crusts were restored and regained within 15 and 40 min, respectively, after rehydration. Photosynthetic activity of the crusts was retained at all applied light intensities when enough water was available, however the degree of the recovery was different between the crusts. Photosynthetic pigment contents were strongly and positively correlated with water content. Our results indicated that tropical desiccation-tolerant cryptogamic crusts found on inselberg rock surfaces have CO2 fixation ability in the range of cyanobacteria and lichens, suggesting that at a global scale they can assimilate CO2 in a significant amount.  相似文献   
4.
    
Protein post-translational modifications mediate dynamic cellular processes with broad implications in human disease pathogenesis. There is a large demand for high-throughput technologies supporting post-translational modifications research, and both mass spectrometry and protein arrays have been successfully utilized for this purpose. Protein arrays override the major limitation of target protein abundance inherently associated with MS analysis. This technology, however, is typically restricted to pre-purified proteins spotted in a fixed composition on chips with limited life-time and functionality. In addition, the chips are expensive and designed for a single use, making complex experiments cost-prohibitive. Combining microfluidics with in situ protein expression from a cDNA microarray addressed these limitations. Based on this approach, we introduce a modular integrated microfluidic platform for multiple post-translational modifications analysis of freshly synthesized protein arrays (IMPA). The system''s potency, specificity and flexibility are demonstrated for tyrosine phosphorylation and ubiquitination in quasicellular environments. Unlimited by design and protein composition, and relying on minute amounts of biological material and cost-effective technology, this unique approach is applicable for a broad range of basic, biomedical and biomarker research.Protein post-translational modifications (PTMs)1 vastly diversify eukaryotic proteomes and are integrated in essentially all cellular processes (1). Proteomic approaches, such as mass spectrometry (MS), have been instrumental in monitoring global molecular dynamics for research and clinical applications (25). However, even in this modern era, large-scale analyses of PTMs by MS is challenging because of the limited number of modified peptides derived from proteins that, by themselves, may not be abundant. Moreover, comprehensive PTM analysis by MS often requires significant amounts of biological material that may not be available. PTM analysis using protein arrays can overcome these limitations because of the equimolar amount of the arrayed proteins (6, 7). Large-scale protein arrays have been successfully integrated into PTM research (8, 9). However, this technology relies on pre-purified proteins that are arrayed on a surface and thus, incompatible with biochemically challenging proteins, let alone insoluble proteins. Moreover, the production of recombinant protein arrays is impractical in-house. Therefore, such arrays cannot be used fresh, and they are inherently limited to certain designs, protein compositions, and model organisms of high commercial value. To overcome the abovementioned limitations, we designed a modular integrated microfluidic platform for PTM analysis (IMPA).  相似文献   
5.
  总被引:5,自引:0,他引:5  
Array-based comparative genome hybridization is a powerful tool for detecting chromosomal imbalances at high resolution. However, the design and setup of such arrays are time consuming and expensive and thus worthwhile only when large numbers of arrays will be processed. To provide a feasible solution, we have developed an algorithm that renders the publicly available Affymetrix 10K SNP genotyping chip useful for high-resolution analysis of chromosomal imbalances. We have used our newly developed algorithm to analyze data from Affymetrix 10K chips that were hybridized with DNA probes from a variety of different sources, such as primary tumors, cell lines, and blood from patients with unbalanced translocations. In summary, we were able to (i) demonstrate the capability of our method by reproduction of published and unpublished data obtained with alternative methods and (ii) identify novel imbalances that were not shown before.  相似文献   
6.

Background  

Exposure to dietary wheat proteins in genetically susceptible individuals has been associated with increased risk for the development of Type 1 diabetes (T1D). Recently, a wheat protein encoded by cDNA WP5212 has been shown to be antigenic in mice, rats and humans with autoimmune T1D. To investigate the genomic origin of the identified wheat protein cDNA, a hexaploid wheat genomic library from Glenlea cultivar was screened.  相似文献   
7.
In Plasmodium falciparum-infected red blood cells (RBCs), the flavoenzyme glutathione reductase (GR) regenerates reduced glutathione, which is essential for antioxidant defense. GR utilizes NADPH produced in the pentose phosphate shunt by glucose-6-phosphate dehydrogenase (G6PD). Thus, conditions affecting host G6PD or GR induce increased sensitivity to oxidants. Hereditary G6PD deficiency is frequent in malaria endemic areas and provides protection against severe malaria. Furthermore, GR deficiency resulting from insufficient saturation of the enzyme with its prosthetic group FAD is common. Based on these naturally occurring phenomena, GR of malaria parasites and their host cells represent attractive antimalarial drug targets. Recently we were given the opportunity to examine invasion, growth, and drug sensitivity of three P. falciparum strains (3D7, K1, and Palo Alto) in the RBCs from three homozygous individuals with total GR deficiency resulting from mutations in the apoprotein. Invasion or growth in the GR-deficient RBCs was not impaired for any of the parasite strains tested. Drug sensitivity to chloroquine, artemisinin, and methylene blue was comparable to parasites grown in GR-sufficient RBCs and sensitivity towards paraquat and sodium nitroprusside was only slightly enhanced. In contrast, membrane deposition of hemichromes as well as the opsonizing complement C3b fragments and phagocytosis were strongly increased in ring-infected RBCs of the GR-deficient individuals compared to ring-infected normal RBCs. Also, in one of the individuals, membrane-bound autologous IgGs were significantly enhanced. Thus, based on our in vitro data, GR deficiency and drug-induced GR inhibition may protect from malaria by inducing enhanced ring stage phagocytosis rather than by impairing parasite growth directly.  相似文献   
8.
Extremophiles - Viruses come in various shapes and sizes, and a number of viruses originate from extremities, e.g. high salinity or elevated temperature. One challenge for studying extreme viruses...  相似文献   
9.
Magnetic resonance (MR) methods enable noninvasive, regional tumor therapy response assessment, but associations between MR parameters, underlying biology, and therapeutic effects must be investigated. The aim of this study was to investigate response assessment efficacy and biological associations of MR parameters in a neuroendocrine tumor (NET) model subjected to radionuclide treatment. Twenty-one mice with NETs received 177Lu-octreotate at day 0. MR experiments (day ?1, 1, 3, 8, and 13) included T2-weighted, dynamic contrast-enhanced (DCE) and diffusion-weighted imaging (DWI) and relaxation measurements (T1/T2*). Tumor tissue was analyzed using proteomics. MR-derived parameters were evaluated for each examination day and for different radial distances from the tumor center. Response assessment efficacy and biological associations were evaluated using feature selection and protein expression correlations, respectively. Reduced tumor growth rate or shrinkage was observed until day 8, followed by reestablished growth in most tumors. The most important MR parameter for response prediction was DCE-MRI–derived pretreatment signal enhancement ratio (SER) at 40% to 60% radial distance, where it correlated significantly also with centrally sampled protein CCD89 (association: DNA damage and repair, proliferation, cell cycle arrest). The second most important was changed diffusion (D) between day ?1 and day 3, at 60% to 80% radial distance, where it correlated significantly also with peripherally sampled protein CATA (association: oxidative stress, proliferation, cell cycle arrest, apoptotic cell death). Important information regarding tumor biology in response to radionuclide therapy is reflected in several MR parameters, SER and D in particular. The spatial and temporal information provided by MR methods increases the sensitivity for tumor therapy response.  相似文献   
10.
In mammals, ceramide kinase (CerK)-mediated phosphorylation of ceramide is the only known pathway to ceramide-1-phosphate (C1P), a recently identified signaling sphingolipid metabolite. To help delineate the roles of CerK and C1P, we knocked out the gene of CerK in BALB/c mice by homologous recombination. All in vitro as well as cell-based assays indicated that CerK activity is completely abolished in Cerk-/- mice. Labeling with radioactive orthophosphate showed a profound reduction in the levels of de novo C1P formed in Cerk-/- macrophages. Consistently, mass spectrometry analysis revealed a major contribution of CerK to the formation of C16-C1P. However, the significant residual C1P levels in Cerk-/- animals indicate that alternative routes to C1P exist. Furthermore, serum levels of proapoptotic ceramide in these animals were significantly increased while levels of dihydroceramide as the biosynthetic precursor were reduced. Previous literature pointed to a role of CerK or C1P in innate immune cell function. Using a variety of mechanistic and disease models, as well as primary cells, we found that macrophage- and mast cell-dependent readouts are barely affected in the absence of CerK. However, the number of neutrophils was strikingly reduced in blood and spleen of Cerk-/- animals. When tested in a model of fulminant pneumonia, Cerk-/- animals developed a more severe disease, lending support to a defect in neutrophil homeostasis following CerK ablation. These results identify ceramide kinase as a key regulator of C1P, dihydroceramide and ceramide levels, with important implications for neutrophil homeostasis and innate immunity regulation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号