首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34篇
  免费   5篇
  2023年   1篇
  2021年   3篇
  2019年   2篇
  2018年   2篇
  2017年   6篇
  2016年   3篇
  2015年   3篇
  2014年   3篇
  2013年   4篇
  2012年   3篇
  2011年   1篇
  2010年   3篇
  2009年   1篇
  2008年   2篇
  2006年   1篇
  2004年   1篇
排序方式: 共有39条查询结果,搜索用时 15 毫秒
1.
2.
3.
Mitochondria are archetypal eukaryotic organelles that were acquired by endosymbiosis of an ancient species of alpha‐proteobacteria by the last eukaryotic common ancestor. The genetic information contained within the mitochondrial genome has been an important source of information for resolving relationships among eukaryotic taxa. In this study, we utilized mitochondrial and chloroplast genomes to explore relationships among prasinophytes. Prasinophytes are represented by diverse early‐diverging green algae whose physical structures and genomes have the potential to elucidate the traits of the last common ancestor of the Viridiplantae (or Chloroplastida). We constructed de novo mitochondrial genomes for two prasinophyte algal species, Pyramimonas parkeae and Cymbomonas tetramitiformis, representing the prasinophyte clade. Comparisons of genome structure and gene order between these species and to those of other prasinophytes revealed that the mitochondrial genomes of P. parkeae and C. tetramitiformis are more similar to each other than to other prasinophytes, consistent with other molecular inferences of the close relationship between these two species. Phylogenetic analyses using the inferred amino acid sequences of mitochondrial and chloroplast protein‐coding genes resolved a clade consisting of P. parkeae and C. tetramitiformis; and this group (representing the prasinophyte clade I) branched with the clade II, consistent with previous studies based on the use of nuclear gene markers.  相似文献   
4.
Universal taxonomic frameworks have been critical tools to structure the fields of botany, zoology, mycology, and bacteriology as well as their large research communities. Animals, plants, and fungi have relatively solid, stable morpho‐taxonomies built over the last three centuries, while bacteria have been classified for the last three decades under a coherent molecular taxonomic framework. By contrast, no such common language exists for microbial eukaryotes, even though environmental ‘‐omics’ surveys suggest that protists make up most of the organismal and genetic complexity of our planet's ecosystems! With the current deluge of eukaryotic meta‐omics data, we urgently need to build up a universal eukaryotic taxonomy bridging the protist ‐omics age to the fragile, centuries‐old body of classical knowledge that has effectively linked protist taxa to morphological, physiological, and ecological information. UniEuk is an open, inclusive, community‐based and expert‐driven international initiative to build a flexible, adaptive universal taxonomic framework for eukaryotes. It unites three complementary modules, EukRef, EukBank, and EukMap, which use phylogenetic markers, environmental metabarcoding surveys, and expert knowledge to inform the taxonomic framework. The UniEuk taxonomy is directly implemented in the European Nucleotide Archive at EMBL‐EBI, ensuring its broad use and long‐term preservation as a reference taxonomy for eukaryotes.  相似文献   
5.
6.
While algal phago-mixotrophs play a major role in aquatic microbial food webs, their diversity remains poorly understood. Recent studies have indicated several species of prasinophytes, early diverging green algae, to be able to consume bacteria for nutrition. To further explore the occurrence of phago-mixotrophy in green algae, we conducted feeding experiments with live fluorescently labeled bacteria stained with CellTracker Green CMFDA, heat-killed bacteria stained with 5-(4,6-dichlorotriazin-2-yl) aminofluorescein (DTAF), and magnetic beads. Feeding was detected via microscopy and/or flow cytometry in five strains of prasinophytes when provided with live bacteria: Pterosperma cristatum NIES626, Pyramimonas parkeae CCMP726, Pyramimonas parkeae NIES254, Nephroselmis pyriformis RCC618, and Dolichomastix tenuilepis CCMP3274. No feeding was detected when heat-killed bacteria or magnetic beads were provided, suggesting a strong preference for live prey in the strains tested. In parallel to experimental assays, green algal bacterivory was investigated using a gene-based prediction model. The predictions agreed with the experimental results and suggested bacterivory potential in additional green algae. Our observations underline the likelihood of widespread occurrence of phago-mixotrophy among green algae, while additionally highlighting potential biases introduced when using prey proxy to evaluate bacterial ingestion by algal cells.Subject terms: Microbial ecology, Cellular microbiology  相似文献   
7.
8.
9.
Many heterotrophic organisms sequester plastids from prey algae and temporarily utilize their photosynthetic capacity. A recent article in BMC Genomics reveals that the dinoflagellate Dinophysis acuminata has acquired photosynthesis-related genes by horizontal gene transfer, which might explain its ability to retain 'stolen' plastids for extended periods of time.  相似文献   
10.
Egg masses of the yellow-spotted salamander Ambystoma maculatum form an association with the green alga “Oophila amblystomatis” (Lambert ex Wille), which, in addition to growing within individual egg capsules, has recently been reported to invade embryonic tissues and cells. The binomial O. amblystomatis refers to the algae that occur in A. maculatum egg capsules, but it is unknown whether this population of symbionts constitutes one or several different algal taxa. Moreover, it is unknown whether egg masses across the geographic range of A. maculatum, or other amphibians, associate with one or multiple algal taxa. To address these questions, we conducted a phylogeographic study of algae sampled from egg capsules of A. maculatum, its allopatric congener A. gracile, and two frogs: Lithobates sylvatica and L. aurora. All of these North American amphibians form associations with algae in their egg capsules. We sampled algae from egg capsules of these four amphibians from localities across North America, established representative algal cultures, and amplified and sequenced a region of 18S rDNA for phylogenetic analysis. Our combined analysis shows that symbiotic algae found in egg masses of four North American amphibians are closely related to each other, and form a well-supported clade that also contains three strains of free-living chlamydomonads. We designate this group as the ‘Oophila’ clade, within which the symbiotic algae are further divided into four distinct subclades. Phylogenies of the host amphibians and their algal symbionts are only partially congruent, suggesting that host-switching and co-speciation both play roles in their associations. We also established conditions for isolating and rearing algal symbionts from amphibian egg capsules, which should facilitate further study of these egg mass specialist algae.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号