首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1701篇
  免费   143篇
  2022年   18篇
  2021年   48篇
  2020年   23篇
  2019年   28篇
  2018年   30篇
  2017年   31篇
  2016年   53篇
  2015年   66篇
  2014年   73篇
  2013年   70篇
  2012年   122篇
  2011年   122篇
  2010年   92篇
  2009年   71篇
  2008年   85篇
  2007年   96篇
  2006年   91篇
  2005年   88篇
  2004年   95篇
  2003年   84篇
  2002年   76篇
  2001年   25篇
  2000年   21篇
  1999年   28篇
  1998年   20篇
  1997年   20篇
  1996年   13篇
  1995年   11篇
  1994年   11篇
  1993年   13篇
  1992年   11篇
  1991年   16篇
  1990年   7篇
  1989年   14篇
  1988年   12篇
  1987年   10篇
  1986年   6篇
  1985年   8篇
  1984年   9篇
  1983年   13篇
  1982年   9篇
  1981年   7篇
  1980年   9篇
  1979年   5篇
  1978年   7篇
  1975年   6篇
  1974年   6篇
  1971年   5篇
  1969年   4篇
  1947年   4篇
排序方式: 共有1844条查询结果,搜索用时 156 毫秒
1.
2.
3.
4.
Interleukin 1 (IL 1) is a principal mediator of the host immune response to microbial challenge. Accessory cells of the monocyte-macrophage series are a major source of this cytokine and are also chronically parasitized by protozoa of the genus Leishmania. This suggests that characterization of the macrophage IL 1 response to Leishmania would increase our understanding of the regulation of host immunity to these organisms. In the present study, the macrophage IL 1 response to Leishmania donovani was examined because infections with this organism have findings consistent with parasite-specific T cell unresponsiveness. Cytokine activity was measured either by direct stimulation or by co-stimulation of thymocytes. Conditioned media from BALB/c resident peritoneal macrophages infected with amastigotes of L. donovani contained no more IL 1 than did supernatant fluids of control cells. In contrast, supernatants from cells stimulated with lipopolysaccharide or heat-killed Listeria monocytogenes had significantly increased cytokine content. Resident cells infected with L. donovani for 4 hr before being stimulated with Listeria demonstrated a suppressed IL 1 response (approximately 40% of Listeria alone) to this secondary particulate stimulus. In contrast, the secondary response of leishmania-preinfected cells to lipopolysaccharide was not affected. To examine whether accessory cell nonresponsiveness to L. donovani (with respect to IL 1) was related to the state of macrophage activation, elicited peritoneal macrophages obtained by injection of proteose peptone were also studied. These cells responded to stimulation with lipopolysaccharide and fixed Staphylococcus aureus with increases in intracellular, membrane, and secreted cytokine activities. In contrast, L. donovani failed to induce any of these activities. This was found to be the case irrespective of whether amastigotes were alive or killed or opsonized with specific antibodies. Elicited cells preinfected with Leishmania responded normally to secondary stimulation with lipopolysaccharide, but not S. aureus (64% of Staphylococcus alone). In addition, attachment and penetration of L. donovani promastigotes and their subsequent conversion to amastigotes within macrophages failed to induce IL 1 synthesis. The findings of this study indicate that L. donovani has the ability to both evade and suppress the macrophage IL 1 response. Because this monokine provides an obligatory signal during macrophage-dependent T cell activation, evasion of signal transduction for IL 1 synthesis may be related to defects in cell-mediated immunity which occur during infections with this organism.  相似文献   
5.
6.
Phenol compounds, such as propofol and thymol, have been shown to act on the GABAA receptor through interaction with specific sites of this receptor. In addition, considering the high lipophilicity of phenols, it is possible that their pharmacological activity may also be the result of the interaction of phenol molecules with the surrounding lipid molecules, modulating the supramolecular organization of the receptor environment. Thus, in the present study, we study the pharmacological activity of some propofol- and thymol-related phenols on the native GABAA receptor using primary cultures of cortical neurons and investigate the effects of these compounds on the micro viscosity of artificial membranes by means of fluorescence anisotropy. The phenol compounds analyzed in this article are carvacrol, chlorothymol, and eugenol. All compounds were able to enhance the binding of [3H]flunitrazepam with EC50 values in the micromolar range and to increase the GABA-evoked Cl? influx in a concentration-dependent manner, both effects being inhibited by the competitive GABAA antagonist bicuculline. These results strongly suggest that the phenols studied are positive allosteric modulators of this receptor. Chlorothymol showed a bell-type effect, reducing its positive effect at concentrations >100 μM. The concentrations necessary to induce positive allosteric modulation of GABAA receptor were not cytotoxic. Although all compounds were able to decrease the micro viscosity of artificial membranes, chlorothymol displayed a larger effect which could explain its effects on [3H]flunitrazepam binding and on cell viability at high concentrations. Finally, it is suggested that these compounds may exert depressant activity on the central nervous system and potentiate the effects of general anesthetics.  相似文献   
7.
8.
The ability of epithelia to migrate and cover wounds is essential to maintaining their functions as physical barriers. Wounding induces many cues that may affect the transition to motility, including the immediate mechanical perturbation, release of material from broken cells, new interactions with adjacent extracellular matrix, and breakdown of physical separation of ligands from their receptors. Depending on the exact nature of wounds, some cues may be present only transiently or insignificantly. In many epithelia, activation of the epidermal growth factor receptor (EGFR) is a central event in induction of motility, and we find that its continuous activation is required for progression of healing of wounds in sheets of corneal epithelial cells. Here, we examine the hypothesis that edges, which are universally and continuously present in wounds, are a cue. Using a novel culture model we find that their presence is sufficient to cause activation of the EGFR and increased motility of cells in the absence of other cues. Edges that are bordered by agarose do not induce activation of the EGFR, indicating that activation is not due to loss of any specific type of cell–cell interaction but rather due to loss of physical constraints.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号