首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   467篇
  免费   34篇
  501篇
  2023年   3篇
  2022年   2篇
  2021年   10篇
  2020年   6篇
  2019年   7篇
  2018年   12篇
  2017年   18篇
  2016年   19篇
  2015年   19篇
  2014年   19篇
  2013年   29篇
  2012年   41篇
  2011年   30篇
  2010年   28篇
  2009年   23篇
  2008年   41篇
  2007年   27篇
  2006年   29篇
  2005年   19篇
  2004年   23篇
  2003年   15篇
  2002年   13篇
  2001年   2篇
  1999年   8篇
  1998年   9篇
  1997年   6篇
  1996年   4篇
  1995年   3篇
  1994年   1篇
  1993年   5篇
  1992年   3篇
  1991年   2篇
  1990年   2篇
  1989年   3篇
  1988年   2篇
  1987年   1篇
  1986年   2篇
  1985年   1篇
  1984年   3篇
  1983年   2篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1974年   1篇
  1965年   2篇
排序方式: 共有501条查询结果,搜索用时 0 毫秒
1.
Summary An ultrastructural study of the features and distribution of collagen fibrils was performed in the endometrium of virgin and pregnant (2nd to 11th day) mice. Collagen-containing structures were observed in the cytoplasm of fibroblasts on the 2nd day of pregnancy. Treatment of tissues with lanthanum nitrate established that these structures were intracytoplasmic. Their association with lysosome-like bodies suggested the occurrence of intracellular digestion of collagen, probably connected with remodeling of the endometrial stroma prior to decidualization. On the 4th day of pregnancy, very few collagen fibrils were present in the intercellular space. From the 6th day of pregnancy onwards, thick collagen fibrils were observed between decidual cells. The diameter of these fibrils measured up to 300 nm whereas the fibrils present in the endometrium of virgin mice measured 40–68 nm.  相似文献   
2.
Calli derived from leaves and radicles of B. ternifolia were grown on Murashige and Skoog (MS) basal medium, and the effects of different nitrogen sources on the rate of callus growth and on the enzymes related to nitrogen assimilation were studied. Ammonium alone did not support callus growth unless a Krebs-cycle intermediate was added to the medium. The activities of glutamine synthetase (EC 6.3.1.2), glutamate synthase (EC 1.4.7.1), and glutamate dehydrogenase (EC 1.4.1.2) were measured in homogenates of callus grown on media supplied with different nitrogen sources. The results indicate that leaf and root calli have similar levels of these enzymes when grown on MS medium (Murashige and Skoog 1962. Physiol. Plant. 15, 473–497). However, when the calli were supplied with glutamine as the sole nitrogen source, the activity of glutamate synthase increased in leaf callus but was almost completely inhibited in root callus. The results indicate that calli originated from different B. ternifolia tissues do not have the same biochemical dedifferentiated state.  相似文献   
3.
Phosphorylation and dephosphorylation of ribosomal proteins have been suggested to participate in the regulation of protein synthesis in eukaryotic organisms. The present research focuses on the purification and partial characterization of a protein kinase from maize ribosomes that specifically phosphorylates acidic ribosomal proteins. Ribosomes purified from maize axes were used as the enzyme source. Purification of ribosomes was performed by centrifugation through a 0.5 M sucrose, 0.8 M KCl cushion. A protein kinase activity present in this fraction was released by extraction with 1.5 M KCl and further purified by diethylaminoethyl cellulose column chromatography. A peak containing protein kinase activity was eluted around 400 m M KCl. Analysis of this fraction by sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed one band of 38 kDa molecular mass, which cross-reacted in a western blot with antibodies raised against proteins from the large ribosomal subunit. This enzyme specifically phosphorylates one of the acidic ribosomal proteins (P2). Its activity is inhibited by Ca2+ and Zn2+ and is activated by Mg2+, polylysine and spermine. The relevance of this protein kinase in reinitiating the protein synthesis process during germination is discussed.  相似文献   
4.
5.
Objectives

To elucidate the molecular mechanisms involved in the substrate interaction of the bile salt hydrolase of Lactobacillus reuteri CRL 1098 (LrBSH) with bile acids (BAs) and to evaluate potential enzyme inhibitors based on computer and in vitro modeling assays.

Results

Asp19, Asn79, and Asn171 participated in the LrBSH interaction with all BAs tested while Leu56 and Glu 222 played an important role in the interaction with glyco- and tauro-conjugated BAs, respectively. A great percentage of hydrophobic and polar interactions were responsible for the binding of LrBSH with glyco- and tauro-conjugated BAs, respectively. Remarkably, the four binding pocket loops participated in the substrate binding site of LrBSH unlike most of the reported BSHs. Inhibition assays showed that ascorbic acid, citric acid, penicillin G, and ciprofloxacin decreased LrBSH activity by 47.1%, 40.14%, 28.8%, and 9%, respectively. Docking analysis revealed that tetracycline and caffeic acid phenethyl ester had the low binding energy (?7.32 and ?7.19 kcal/mol, respectively) and resembled the interaction pattern of GDCA (?6.88 kcal/mol) while penicillin (?6.25 kcal/mol) and ascorbic acid (?5.98 kcal/mol) interacted at a longer distance.

Conclusion

This study helps to delve into the molecular mechanisms involved in the recognition of substrates and potential inhibitors of LrBSH.

  相似文献   
6.
Eukaryotic parasites of the genus Plasmodium cause malaria by invading and developing within host erythrocytes. Here, we demonstrate that PfShelph2, a gene product of Plasmodium falciparum that belongs to the Shewanella-like phosphatase (Shelph) subfamily, selectively hydrolyzes phosphotyrosine, as shown for other previously studied Shelph family members. In the extracellular merozoite stage, PfShelph2 localizes to vesicles that appear to be distinct from those of rhoptry, dense granule, or microneme organelles. During invasion, PfShelph2 is released from these vesicles and exported to the host erythrocyte. In vitro, PfShelph2 shows tyrosine phosphatase activity against the host erythrocyte protein Band 3, which is the most abundant tyrosine-phosphorylated species of the erythrocyte. During P. falciparum invasion, Band 3 undergoes dynamic and rapid clearance from the invasion junction within 1 to 2 s of parasite attachment to the erythrocyte. Release of Pfshelph2 occurs after clearance of Band 3 from the parasite-host cell interface and when the parasite is nearly or completely enclosed in the nascent vacuole. We propose a model in which the phosphatase modifies Band 3 in time to restore its interaction with the cytoskeleton and thus reestablishes the erythrocyte cytoskeletal network at the end of the invasion process.  相似文献   
7.

Aims

Hypertension is associated with the impairment of renal cyclooxygenase (COX) activity, which regulates vascular tone, salt and water balance and renin release. We aimed to evaluate the functional role of COX isoforms in kidneys isolated from spontaneously hypertensive rats (SHR) after α1-adrenoceptor (α1-AR) stimulation.

Main methods

Male six-month-old SHR and normotensive Wistar-Kyoto rats (WKY) were used. The kidneys were isolated to measure perfusion pressure and COX-1- or COX-2-derived prostanoids in response to α1-AR activation.

Key findings

The basal perfusion pressure was higher in SHR kidneys compared with WKY kidneys (95 ± 11 vs. 68 ± 6 mm Hg, P < 0.05). Phenylephrine induced a greater vasopressor response in SHR kidneys (EC50 of 1.89 ± 0.58 nmol) than WKY kidneys (EC50 of 3.30 ± 0.54 nmol, P < 0.05 vs. SHR). COX-1 inhibition decreased the α1-AR-induced vasoconstrictor response in WKY but did not affect SHR response, while COX-2 inhibition diminished the response in SHR. Both basal prostacyclin (PGI2) and thromboxane A2 (TxA2) values were higher in SHR kidney perfusates (P < 0.05) and were reduced by COX-1 and COX-2 inhibitors in both strains. Furthermore, phenylephrine increased PGI2 through COX-2 in WKY and through COX-1 in SHR, but the agonist did not significantly modify TxA2 in both strains.

Significance

The data suggest that COX-1contributes to vasoconstrictor effects in WKY kidneys and that COX-2 has the same effect in SHR kidneys. The results also suggest that basal release of COX-2-derived vasoconstrictor prostanoids is involved in renal vascular hypersensitivity in SHR.  相似文献   
8.
Glycolytic enzymes (GEs) have been shown to exist in multienzyme complexes on the inner surface of the human erythrocyte membrane. Because no protein other than band 3 has been found to interact with GEs, and because several GEs do not bind band 3, we decided to identify the additional membrane proteins that serve as docking sites for GE on the membrane. For this purpose, a method known as “label transfer” that employs a photoactivatable trifunctional cross-linking reagent to deliver a biotin from a derivatized GE to its binding partner on the membrane was used. Mass spectrometry analysis of membrane proteins that were biotinylated following rebinding and photoactivation of labeled GAPDH, aldolase, lactate dehydrogenase, and pyruvate kinase revealed not only the anticipated binding partner, band 3, but also the association of GEs with specific peptides in α- and β-spectrin, ankyrin, actin, p55, and protein 4.2. More importantly, the labeled GEs were also found to transfer biotin to other GEs in the complex, demonstrating for the first time that GEs also associate with each other in their membrane complexes. Surprisingly, a new GE binding site was repeatedly identified near the junction of the membrane-spanning and cytoplasmic domains of band 3, and this binding site was confirmed by direct binding studies. These results not only identify new components of the membrane-associated GE complexes but also provide molecular details on the specific peptides that form the interfacial contacts within each interaction.  相似文献   
9.
In the past two decades, Candida species have become the second leading cause of invasive mycosis in immunocompromised patients. In order to colonize their hosts, these microorganisms express adhesins and cell wall proteins that allow them to adhere and neutralize the reactive oxygen species produced by phagocytic cells during the respiratory burst. However, the precise mechanism by which Candida cell wall proteins change their expression in response to oxidative stress has not been described. In an attempt to understand this change in response to oxidative stress, in this study, three Candida species, namely, C. albicans, C. glabrata and C. krusei, were exposed to increasing concentrations of H2O2 and induced cell wall proteins were identified by two-dimensional gel electrophoresis and peptide mass fingerprinting. Sequence analysis of differential proteins led to the identification of two heat-shock proteins in C. albicans, two enolases in C. glabrata and one enolase in C. krusei. Enolases may be involved in the protection of pathogenic cells against oxidative stress as suggested by the decrease in their expression when they were exposed to high concentrations of H2O2. To our knowledge, this is the first demonstration that expression of these proteins changes in response to oxidative stress in different Candida species. This knowledge can eventually facilitate both an early diagnosis and a more efficient treatment of this mycosis.  相似文献   
10.
Melanoma is a paradigm of aggressive tumors with a complex and heterogeneous genetic background. Still, melanoma cells frequently retain developmental traits that trace back to lineage specification programs. In particular, lysosome-associated vesicular trafficking is emerging as a melanoma-enriched lineage dependency. However, the contribution of other lysosomal functions such as autophagy to melanoma progression is unclear, particularly in the context of metastasis and resistance to targeted therapy. Here we mined a broad spectrum of cancers for a meta-analysis of mRNA expression, copy number variation and prognostic value of 13 core autophagy genes. This strategy identified heterozygous loss of ATG5 at chromosome band 6q21 as a distinctive feature of advanced melanomas. Importantly, partial ATG5 loss predicted poor overall patient survival in a manner not shared by other autophagy factors and not recapitulated in other tumor types. This prognostic relevance of ATG5 copy number was not evident for other 6q21 neighboring genes. Melanocyte-specific mouse models confirmed that heterozygous (but not homozygous) deletion of Atg5 enhanced melanoma metastasis and compromised the response to targeted therapy (exemplified by dabrafenib, a BRAF inhibitor in clinical use). Collectively, our results support ATG5 as a therapeutically relevant dose-dependent rheostat of melanoma progression. Moreover, these data have important translational implications in drug design, as partial blockade of autophagy genes may worsen (instead of counteracting) the malignant behavior of metastatic melanomas.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号