首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   406篇
  免费   34篇
  国内免费   9篇
  2023年   3篇
  2022年   4篇
  2021年   19篇
  2020年   4篇
  2019年   7篇
  2018年   11篇
  2017年   11篇
  2016年   9篇
  2015年   31篇
  2014年   35篇
  2013年   24篇
  2012年   23篇
  2011年   20篇
  2010年   29篇
  2009年   17篇
  2008年   19篇
  2007年   19篇
  2006年   25篇
  2005年   11篇
  2004年   19篇
  2003年   10篇
  2002年   6篇
  2001年   10篇
  2000年   6篇
  1999年   7篇
  1998年   12篇
  1997年   8篇
  1996年   6篇
  1995年   1篇
  1994年   9篇
  1993年   1篇
  1992年   3篇
  1991年   5篇
  1990年   1篇
  1989年   1篇
  1988年   3篇
  1987年   1篇
  1986年   4篇
  1985年   3篇
  1982年   2篇
  1977年   2篇
  1975年   2篇
  1970年   1篇
  1968年   2篇
  1955年   1篇
  1954年   2篇
排序方式: 共有449条查询结果,搜索用时 15 毫秒
1.
Previous studies of ours have demonstrated that a recombinant protein (Fh15) related to fatty acid-binding proteins did not induce significant protection in rabbits challenged 2 or 4 wk postimmunization over nonimmunized controls. In the current study, rabbits were immunized with Fh15 and challenged with Fasciola hepatica metacercariae 12 and 20 wk later. In the current study in which longer lag periods for challenge infection after the second immunization were used, worm burden reductions compared to adjuvant controls were a significant 43% and 76%, respectively. Importantly, rabbits immunized with Fh15 had significant numbers of immature flukes, 66% in the 12-wk period and 84% in the 20-wk lag period as compared to controls. In addition, liver lesions were clearly diminished in the vaccinated rabbits. Enzyme-linked immunosorbent assay absorbance values showed that immunized rabbits developed high antibody levels to Fh15 from 8 wk after the first immunization and did not increase after challenge. These results suggest that a recombinant F. hepatica molecule related to fatty acid-binding proteins induces protective (worm burden reductions), anti-fecundity (immature flukes), and anti-pathology (less liver lesions) effects in rabbits and may serve as a model for the immunoprophylaxis of fascioliasis.  相似文献   
2.
3.
4.
Oxygen consumption, air cell gases, hematology, blood gases and pH of Puna teal (Anas versicolor puna) embryos were measured at the altitude at which the eggs were laid (4150 m) in the Peruvian Andes. In contrast to the metabolic depression described by other studies on avian embryos incubated above 3700 m, O2 consumption of Puna teal embryos was higher than even that of some lowland avian embryos at equivalent body masses. Air cell O2 tensions dropped from about 80 toor in eggs with small embryos to about 45 toor in eggs containing a 14-g embryo; simultaneously air cell CO2 tension rose from virtually negligible amounts to around 26 torr. Arterial and venous O2 tensions (32–38 and 10–12 toor, respectively, in 12- to 14-g embryos) were lower than described previously in similarly-sized lowland wild avian embryos or chicken embryos incubated in shells with restricted gas exchange. The difference between air cell and arterial O2 tensions dropped significantly during incubation to a minimum of 11 torr, the lowest value recorded in any avian egg. Blood pH (mean 7.49) did not vary significantly during incubation. Hemoglobin concentration and hematocrits rose steadily throughout incubation to 11.5 g · 100 ml-1 and 39.9%, respectively, in 14-g embryos.Abbreviations PO2 partial pressure gradient of O2 - BM body mass - D diffusion coefficient - G gas conductance (cm3·s-1·torr-1) - conductance to water vapor - IP internal pipping of embryos - P ACO2 partial pressure of carbon dioxide in air cell - P AO2 partial pressure of oxygen in air cell - P aCO2 partial pressure of carbon dioxide in arterial blood - P aCO2 partial pressure of oxygen in arteries - P H barometric pressure (torr) - PCO2 partial pressure of carbon dioxide - P IO2 partial pressure in ambiant air - PO2 partial pressure of oxygen - P VCO2 venous carbon dioxide partial pressure - P VO2 mixed venous oxygen partial pressure - SE standard error - VO 2 oxygen consumption  相似文献   
5.
6.
Martina Ferraguti  Sergio Magallanes  Jéssica Jiménez-Peñuela  Josué Martínez-de la Puente  Luz Garcia-Longoria  Jordi Figuerola  Jaime Muriel  Tamer Albayrak  Staffan Bensch  Camille Bonneaud  Rohan H. Clarke  Gábor Á. Czirják  Dimitar Dimitrov  Kathya Espinoza  John G. Ewen  Farah Ishtiaq  Wendy Flores-Saavedra  László Zsolt Garamszegi  Olof Hellgren  Dita Horakova  Kathryn P. Huyvaert  Henrik Jensen  Asta Križanauskienė  Marcos R. Lima  Charlene Lujan-Vega  Eyðfinn Magnussen  Lynn B. Martin  Kevin D. Matson  Anders Pape Møller  Pavel Munclinger  Vaidas Palinauskas  Péter L. Pap  Javier Pérez-Tris  Swen C. Renner  Robert Ricklefs  Sergio Scebba  Ravinder N. M. Sehgal  Manuel Soler  Eszter Szöllősi  Gediminas Valkiūnas  Helena Westerdahl  Pavel Zehtindjiev  Alfonso Marzal 《Global Ecology and Biogeography》2023,32(5):809-823

Aim

The increasing spread of vector-borne diseases has resulted in severe health concerns for humans, domestic animals and wildlife, with changes in land use and the introduction of invasive species being among the main possible causes for this increase. We explored several ecological drivers potentially affecting the local prevalence and richness of avian malaria parasite lineages in native and introduced house sparrows (Passer domesticus) populations.

Location

Global.

Time period

2002–2019.

Major taxa studied

Avian Plasmodium parasites in house sparrows.

Methods

We analysed data from 2,220 samples from 69 localities across all continents, except Antarctica. The influence of environment (urbanization index and human density), geography (altitude, latitude, hemisphere) and time (bird breeding season and years since introduction) were analysed using generalized additive mixed models (GAMMs) and random forests.

Results

Overall, 670 sparrows (30.2%) were infected with 22 Plasmodium lineages. In native populations, parasite prevalence was positively related to urbanization index, with the highest prevalence values in areas with intermediate urbanization levels. Likewise, in introduced populations, prevalence was positively associated with urbanization index; however, higher infection occurred in areas with either extreme high or low levels of urbanization. In introduced populations, the number of parasite lineages increased with altitude and with the years elapsed since the establishment of sparrows in a new locality. Here, after a decline in the number of parasite lineages in the first 30 years, an increase from 40 years onwards was detected.

Main conclusions

Urbanization was related to parasite prevalence in both native and introduced bird populations. In invaded areas, altitude and time since bird introduction were related to the number of Plasmodium lineages found to be infecting sparrows.  相似文献   
7.
L1 retroposons are represented in mice by subfamilies of interspersed sequences of varied abundance. Previous analyses have indicated that subfamilies are generated by duplicative transposition of a small number of members of the L1 family, the progeny of which then become a major component of the murine L1 population, and are not due to any active processes generating homology within preexisting groups of elements in a particular species. In mice, more than a third of the L1 elements belong to a clade that became active approximately 5 Mya and whose elements are > or = 95% identical. We have collected sequence information from 13 L1 elements isolated from two species of voles (Rodentia: Microtinae: Microtus and Arvicola) and have found that divergence within the vole L1 population is quite different from that in mice, in that there is no abundant subfamily of homologous elements. Individual L1 elements from voles are very divergent from one another and belong to a clade that began a period of elevated duplicative transposition approximately 13 Mya. Sequence analyses of portions of these divergent L1 elements (approximately 250 bp each) gave no evidence for concerted evolution having acted on the vole L1 elements since the split of the two vole lineages approximately 3.5 Mya; that is, the observed interspecific divergence (6.7%-24.7%) is not larger than the intraspecific divergence (7.9%-27.2%), and phylogenetic analyses showed no clustering into Arvicola and Microtus clades.   相似文献   
8.
Molecular phylogeny and divergence times of drosophilid species   总被引:32,自引:15,他引:17  
The phylogenetic relationships and divergence times of 39 drosophilid species were studied by using the coding region of the Adh gene. Four genera--Scaptodrosophila, Zaprionus, Drosophila, and Scaptomyza (from Hawaii)--and three Drosophila subgenera--Drosophila, Engiscaptomyza, and Sophophora--were included. After conducting statistical analyses of the nucleotide sequences of the Adh, Adhr (Adh-related gene), and nuclear rRNA genes and a 905-bp segment of mitochondrial DNA, we used Scaptodrosophila as the outgroup. The phylogenetic tree obtained showed that the first major division of drosophilid species occurs between subgenus Sophophora (genus Drosophila) and the group including subgenera Drosophila and Engiscaptomyza plus the genera Zaprionus and Scaptomyza. Subgenus Sophophora is then divided into D. willistoni and the clade of D. obscura and D. melanogaster species groups. In the other major drosophilid group, Zaprionus first separates from the other species, and then D. immigrans leaves the remaining group of species. This remaining group then splits into the D. repleta group and the Hawaiian drosophilid cluster (Hawaiian Drosophila, Engiscaptomyza, and Scaptomyza). Engiscaptomyza and Scaptomyza are tightly clustered. Each of the D. repleta, D. obscura, and D. melanogaster groups is monophyletic. The splitting of subgenera Drosophila and Sophophora apparently occurred about 40 Mya, whereas the D. repleta group and the Hawaiian drosophilid cluster separated about 32 Mya. By contrast, the splitting of Engiscaptomyza and Scaptomyza occurred only about 11 Mya, suggesting that Scaptomyza experienced a rapid morphological evolution. The D. obscura and D. melanogaster groups apparently diverged about 25 Mya. Many of the D. repleta group species studied here have two functional Adh genes (Adh-1 and Adh-2), and these duplicated genes can be explained by two duplication events.   相似文献   
9.
Sulfate reduction and S-oxidation in a moorland pool sediment   总被引:3,自引:2,他引:1  
In an oligotrophic moorland pool in The Netherlands, S cycling near the sediment/water boundary was investigated by measuring (1) SO4 2– reduction rates in the sediment, (2) depletion of SO4 2– in the overlying water column and (3) release of35S from the sediment into the water column. Two locations differing in sediment type (highly organic and sandy) were compared, with respect to reduction rates and depletion of SO4 2– in the overlying water.Sulfate reduction rates in sediments of an oligotrophic moorland pool were estimated by diagenetic modelling and whole core35SO4 2– injection. Rates of SO4 2– consumption in the overlying water were estimated by changes in SO4 2– concentration over time in in situ enclosures. Reduction rates ranged from 0.27–11.2 mmol m–2 d–1. Rates of SO4 2– uptake from the enclosed water column varied from –0.5, –0.3 mmol m–2 d–1 (November) to 0.43–1.81 mmol m–2 d–1 (July, August and April). Maximum rates of oxidation to SO4 2– in July 1990 estimated by combination of SO4 2– reduction rates and rates of in situ SO4 2– uptake in the enclosed water column were 10.3 and 10.5 mmol m–2 d–1 at an organic rich and at a sandy site respectively.Experiments with35S2– and35SO4 2– tracer suggested (1) a rapid formation of organically bound S from dissimilatory reduced SO4 2– and (2) the presence of mainly non SO4 2–-S derived from reduced S transported from the sediment into the overlying water. A35S2– tracer experiment showed that about 7% of35S2– injected at 1 cm depth in a sediment core was recovered in the overlying water column.Sulfate reduction rates in sediments with higher volumetric mass fraction of organic matter did not significantly differ from those in sediments with a lower mass fraction of organic matter.Corresponding author  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号