首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   131篇
  免费   11篇
  2023年   2篇
  2022年   3篇
  2021年   8篇
  2020年   9篇
  2019年   9篇
  2018年   6篇
  2017年   10篇
  2016年   13篇
  2015年   15篇
  2014年   15篇
  2013年   14篇
  2012年   6篇
  2011年   7篇
  2010年   4篇
  2009年   3篇
  2008年   2篇
  2007年   4篇
  2006年   2篇
  2005年   1篇
  2004年   2篇
  2003年   3篇
  2002年   2篇
  1994年   1篇
  1992年   1篇
排序方式: 共有142条查询结果,搜索用时 0 毫秒
1.
Plasmepsin (Plm) has been identified as an important target for the development of new antimalarial drugs, since its inhibition leads to the starvation of Plasmodium falciparum. A series of substrate-based dipeptide-type Plm II inhibitors containing the hydroxymethylcarbonyl isostere as a transition-state mimic were synthesized. The general design principle was provision of a conformationally restrained hydroxyl group (corresponding to the set residue at the P2' position in native substrates) and a bulky unit to fit the S2' pocket.  相似文献   
2.
Effects of various concentrations of Dormex (a.i. 49% hydrogen cyanamide) on fruit thinning of Rome Beauty apple (Malus domestica Borkh.), Friar and Simka plums (Prunus salicina Lindley) were studied. A full bloom application of Dormex at all tested concentrations decreased Rome Beauty apple fruit set and yield, and increased fruit weight. Dormex at 0.25% (v/v) resulted in adequate apple thinning, indicated by production of an optimum fruit weight (320 g). Prebloom and full bloom applications of Dormex at greater than 0.75% reduced plum fruit set and yield in Friar. Full bloom application of Dormex at 0.50% showed a satisfactory fruit set, yield, and fruit weight in Friar plum. Prebloom Dormex application had no significant effect on `Simka' plum fruit set or yield, but full bloom application decreased fruit set and yield.  相似文献   
3.
Elevated CO2 interactions with other factors affects the plant performance. Regarding the differences between cultivars in response to CO2 concentrations, identifying the cultivars that better respond to such conditions would maximize their potential benefits. Increasing the ability of plants to benefit more from elevated CO2 levels alleviates the adverse effects of photoassimilate accumulation on photosynthesis and increases the productivity of plants. Despite its agronomic importance, there is no information about the interactive effects of elevated CO2 concentration and plant growth regulators (PGRs) on potato (Solanum tuberosum L.) plants. Hence, the physiological response and source-sink relationship of potato plants (cvs. Agria and Fontane) to combined application of CO2 levels (400 vs. 800 µmol mol−1) and plant growth regulators (PGR) [6-benzylaminopurine (BAP) + Abscisic acid (ABA)] were evaluated under a controlled environment. The results revealed a variation between the potato cultivars in response to a combination of PGRs and CO2 levels. Cultivars were different in leaf chlorophyll content; Agria had higher chlorophyll a, b, and total chlorophyll content by 23, 43, and 23%, respectively, compared with Fontane. The net photosynthetic rate was doubled at the elevated compared with the ambient CO2. In Agria, the ratio of leaf intercellular to ambient air CO2 concentrations [Ci:Ca] was declined in elevated-CO2-grown plants, which indicated the stomata would become more conservative at higher CO2 levels. On the other hand, the increased Ci:Ca in Fontane showed a stomatal acclimation to higher CO2 concentration. The higher leaf dark respiration of the elevated CO2-grown and BAP + ABA-treated plants was associated with a higher leaf soluble carbohydrates and starch content. Elevated CO2 and BAP + ABA shifted the dry matter partitioning to the belowground more than the above-media organs. The lower leaf soluble carbohydrate content and greater tuber yield in Fontane might indicate a more efficient photoassimilate translocation than Agria. The results highlighted positive synergic effects of the combined BAP + ABA and elevated CO2 on tuber yield and productivity of the potato plants.  相似文献   
4.
Exclusion of sodium ions from cells is one of the key salinity tolerance mechanisms in plants. The high-affinity cation transporter (HKT1;5) is located in the plasma membrane of the xylem, excluding Na+ from the parenchyma cells to reduce Na+ concentration. The regulatory mechanism and exact functions of HKT genes from different genotypic backgrounds are relatively obscure. In this study, the expression patterns of HKT1;5 in A and D genomes of wheat were investigated in root and leaf tissues of wild and domesticated genotypes using real-time PCR. In parallel, the K+/Na+ ratio was measured in salt-tolerant and salt-sensitive cultivars. Promoter analysis were applied to shed light on underlying regulatory mechanism of the HKT1;5 expression. Gene isolation and qPCR confirmed the expression of HKT1;5 in the A and D genomes of wheat ancestors (Triticum boeoticum, AbAb and Aegilops crassa, MMDD, respectively). Interestingly, earlier expression of HKT1;5 was detected in leaves compared with roots in response to salt stress. In addition, the salt-tolerant genotypes expressed HKT1;5 before salt-sensitive genotypes. Our results suggest that HKT1;5 expression follows a tissue- and genotype-specific pattern. The highest level of HKT1;5 expression was observed in the leaves of Aegilops, 6 h after being subjected to high salt stress (200 mM). Overall, the D genome allele (HKT1;5-D) showed higher expression than the A genome (HKT1;5-A) allele when subjected to a high NaCl level. We suggest that the D genome is more effective regarding Na+ exclusion. Furthermore, in silico promoter analysis showed that TaHKT1;5 genes harbor jasmonic acid response elements.  相似文献   
5.
6.
7.

The current study focused on improving the production of phenolic acids in the Woodland Sage cell suspension culture (CSC) through attaining high-yielding cell lines and carboxyl functionalized multi-walled carbon nanotubes (MWCNT-COOH) elicitation. The leaf-derived callus was irradiated at different doses of gamma irradiation 10 to 100 Gy. The maximum content of rosmarinic acid (RA), salvianolic acid B (SAB), ferulic acid (FA), and cinnamic acid (CA) was recorded in callus cultures irradiated with 70 Gy, which was 18.53, 5.21, 1.9, and 7.59 mg/g DW, respectively. The CSC that established from 70 Gy γ-irradiated calli accumulated 1.7-fold RA more higher irradiated callus culture. The CSC elicited with various concentrations of MWCNT-COOH in range 25 to 100 mg/l significantly increased fresh weight (FW), dry weight (DW), and phenolic acid contents of cells. The highest FW with 268.47 g/l and DW with 22.17 g/l was obtained in 100 mg/l MWCNT-COOH treatment. The RA, SAB, CA and FA content of CSC treated with 100 mg/l MWCNT-COOH were 13-fold, 14.2-fold, 20-fold, and 3- fold higher than wild S. nemorosa plant at flowering stage, respectively. The antioxidant activity of cultures significantly enhanced with both gamma and MWCNT-COOH based on DPPH and FRAP assay. Our results showed that the combination of cell line selection and MWCNT-COOH elicitation significantly improved the production of secondary metabolites in Woodland Sage, which is useful for large-scale production of phenolic compounds.

  相似文献   
8.
9.

Objectives

To assess the effects of non-communicable diseases, such as diabetes, hypertension and obesity, on the mother and the infant.

Methods

A multicentre cohort study was conducted in three hospitals in the city of Riyadh in Saudi Arabia. All Saudi women and their babies who delivered in participating hospitals were eligible for recruitment. Data on socio-demographic characteristics in addition to the maternal and neonatal outcomes of pregnancy were collected. The cohort demographic profile was recorded and the prevalence of maternal conditions including gestational diabetes, pre-gestational diabetes, hypertensive disorders in pregnancy and obesity were estimated.

Findings

The total number of women who delivered in participating hospitals during the study period was 16,012 of which 14,568 women participated in the study. The mean age of the participants was 29 ± 5.9 years and over 40% were university graduates. Most of the participants were housewives, 70% were high or middle income and 22% were exposed to secondhand smoke. Of the total cohort, 24% were married to a first cousin. More than 68% of the participants were either overweight or obese. The preterm delivery rate was 9%, while 1.5% of the deliveries were postdate. The stillbirth rate was 13/1000 live birth. The prevalence of gestational diabetes was 24% and that of pre-gestational diabetes was 4.3%. The preeclampsia prevalence was 1.1%. The labour induction rate was 15.5% and the cesarean section rate was 25%.

Conclusion

Pregnant women in Saudi Arabia have a unique demographic profile. The prevalence of obesity and diabetes in pregnancy are among the highest in the world.  相似文献   
10.
Research on feasible methods for the enhancement of bioremediation in soil contaminated by crude oil is vital in oil-exporting countries such as Kuwait, where crude oil is a major pollutant and the environment is hostile to biodegradation. This study investigated the possibility of enhancing crude oil bioremediation by supplementing soil with cost-effective organic materials derived from two widespread locally grown trees, Conocarpus and Tamarix. Amendments in soils increased the counts of soil microbiota by up to 98% and enhanced their activity by up to 95.5%. The increase in the biodegradation of crude oil (75%) and high levels of alkB expression substantiated the efficiency of the proposed amendment technology for the bioremediation of hydrocarbon-contaminated sites. The identification of crude-oil-degrading bacteria revealed the dominance of the genus Microbacterium (39.6%), Sphingopyxis soli (19.3%), and Bordetella petrii (19.6%) in unamended, Conocarpus-amended, and Tamarix-amended contaminated soils, respectively. Although soil amendments favored the growth of Gram-negative bacteria and reduced bacterial diversity, the structures of bacterial communities were not significantly altered.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号