首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   1篇
  25篇
  2020年   1篇
  2018年   1篇
  2017年   1篇
  2014年   1篇
  2013年   1篇
  2012年   2篇
  2011年   2篇
  2010年   1篇
  2009年   4篇
  2008年   2篇
  2007年   1篇
  2006年   1篇
  2004年   1篇
  2002年   1篇
  2001年   1篇
  1998年   1篇
  1995年   1篇
  1989年   1篇
  1983年   1篇
排序方式: 共有25条查询结果,搜索用时 15 毫秒
1.
Vegetation on avalanche paths in the alps   总被引:1,自引:0,他引:1  
Vegetation pattern on avalanche paths in the Nordkette Mountains near Innsbruck (Tyrol, Austria) was studied using transect sampling. The plant communities represent a gradient from alpine grassland (Seslerio-Caricetum sempervirentis, via grassland with Trisetum distichophyllum) and nutrient-poor grassland (Carlino-Caricetum sempervirentis) to an avalanche grassland proper. Along this gradient disturbance decreases from higher to lower elevations. The topography of the avalanche path suggests a gradient from the central zone to the edge of the path, although a floristic zonation or grouping of species across the path cannot be detected. Disturbance and local topography are the dominant factors for the vegetation pattern on the avalanche paths investigated.Abbreviations DCA= detrended correspondence analysis  相似文献   
2.
The evolution of species or ecotypes can occur gradually through neutral and adaptive genetic changes. To explore the influence of natural selection during early phases of divergence, morphological and ecological discontinuity and its adaptive significance were investigated in six pairs of alpine and independently evolved montane populations of Heliosperma pusillum s.l.; the latter are usually taxonomically recognised at the species rank in spite of their highly debatable taxonomic value. We tested whether environmental conditions – characterised by Landolt indicator values from vegetation surveys and temperature measurements – and morphology of alpine and montane populations differ discretely and in parallel across six population pairs. By reciprocal transplantation experiments in natural environments in two population pairs and in climate chambers for five population pairs we compared fitness of native versus non‐native individuals. Alpine and montane populations differed in environmental conditions and morphology within each pair. Morphological differentiation occurred in parallel and correlated with environmental, but not with genetic distances. In both environments, native individuals had higher establishment success and plant size. Differentiation of the independently evolved montane populations is driven by natural selection and parallel, independent adaptation in response to drought, lower irradiance and higher, less fluctuating temperatures in montane populations. Our study system exemplifies rapid, parallel evolution leading to morphologically and ecologically strongly divergent, though fully interfertile, ecotypes.  相似文献   
3.
Long-term persistent seeds are generally expected to be small and spherically shaped. In contrast, transient seeds are often large, flattened and elongated. We hypothesized that alpine species follow these trends, and that most species of unstable alpine habitats have the potential to form long-term persistent seed banks. The latter would enable them to delay germination until favourable conditions are present in their environment thereby increasing the likelihood for establishment of seedlings. We selected nine alpine species of more or less unstable habitats (i.e. Achillea moschata, Artemisia genipi, Anthyllis vulneraria ssp. alpicola, Geum reptans, Linaria alpina, Oxyria digyna, Saxifraga aizoides, Saxifraga oppositifolia, and Trifolium pallescens) for this study. Seed longevity was estimated by a 5-year burial experiment in the field with seed excavations after 1 winter, 2 years and 5 years. Germination experiments in the growth chamber and viability tests were performed after each excavation. We detected longevity patterns ranging from transient to long-term persistent. Two species were classified as transient. All other species have the potential to form persistent seed banks, with almost half of the investigated species showing a trend for long-term persistence. Despite contradictory reports, long-term persistent seed banks are an important life history trait of species of unstable alpine habitats. We found that seed shape and hard-seededness are good predictors of seed persistence of alpine species. Seed size seems to be less important. The data from this study support the general hypotheses describing the relationship among seed size, seed shape and seed persistence in the soil.  相似文献   
4.
5.
How does genetic diversity within populations of plants develop during primary succession on alpine glacier forelands? Theory predicts that pioneer populations are characterized by low genetic diversity due to founder effects and that genetic diversity increases within populations as they mature and recurrent gene flow occurs. However, few genetic studies have so far been carried out on plants on glacier forelands. In this study, we analysed the development of genetic diversity with time for populations of Trifolium pallescens along successional series (chronosequences) on three parallel glacier forelands in the European Alps, using neutral amplified fragment length polymorphism. No general trend in the development of genetic diversity was observed with increasing population age: even pioneer populations harboured substantial genetic diversity. Assignment tests showed that the latter consist of a genetic sub-sample from several source areas, and not just from other populations on the glacier forelands. We also detected some long distances-that is, inter-valley gene flow events. However, gene flow was not spatially unrestricted, as shown by a weak isolation by distance pattern within glacier valleys. The actual patterns of genetic diversity along the chronosequences are a result of the combination of factors, such as gene flow and growth rate, influenced by site- and species-specific attributes.  相似文献   
6.
The primary succession on glacier forelands is characterized by a sequence of early and late successional species, but whether there is also a chronosequence at the intraspecific, genetic level is a matter of debate. Two opposing hypotheses differ in their prediction of genetic diversity in colonizing populations due to founder effects and postcolonization gene immigration. The development of genetic diversity in the pioneer Saxifraga aizoides was investigated along a successional gradient on two parallel glacier forelands, in order to test whether populations from older successional stages were less genetically diverse than populations from younger successional stages, and to locate the sources of the propagules that originally colonized new glacier foreland. Genetic diversity was determined with amplified fragment length polymorphisms, and potential sources of colonizing propagules were assessed via assignment tests. Our results indicate considerable postcolonization gene flow among populations on glacier forelands, since population differentiation was low and genetic diversity within populations was significantly higher. Molecular diversity and differentiation of populations did not develop linearly. Dispersal events within the glacier foreland, from the adjacent valley slopes, and from parallel glacier valleys were identified. In summary, it seems that the colonization of glacier forelands in the European Alps is highly dynamic and stochastic.  相似文献   
7.
A large variety of reproductive patterns is present among alpine plants to ensure the persistence of populations in such harsh environments. In the present study, the role of spontaneous selfing and its contribution to the actual reproductive success of an alpine pioneer plant was investigated. The results showed that Saxifraga aizoides is clearly self-compatible. Open-pollinated flowers exhibited higher seed numbers per capsules than selfing flowers, albeit the difference was not significant. Although seed weight seemed to be independent from the kind of pollination, open-pollinated flowers had a significantly higher proportion of germinated seeds than selfed ones. Furthermore, the ability of fast germination found in S. aizoides enables the seeds to take advantage of all possible opportunities for germination. In summary, S. aizoides exhibits a successful recruitment strategy for an alpine pioneer species.  相似文献   
8.
The colonization of artificially created gaps was analyzed along an alpine successional gradient from pioneer to early, late, and old successional stages. The presence/absence of species and the abundances of seedlings and adults in the gaps were recorded and compared with those of the surrounding areas. We hypothesized that in the older successional stages, the gaps were likely to be colonized by clonal ingrowth of the surrounding species. In the younger stages, we expected to find a high presence of seedlings and adults recruited by seeds. Micro-succession in the gaps occurred at each successional stage, with all life forms among the colonizers. The abundance of seedlings was significantly higher in the gaps compared with the surrounding area. At the early and late successional stages, the surrounding areas provided safe sites for seedling establishment, with the abundance of adults recruited by seeds higher at the gap edges than in the gap centers. We can confirm the first hypothesis of a higher clonal ingrowth in the old successional stage. Clonal ingrowth also occurred in the younger successional stages. Despite the lower species richness in the gaps, a positive correlation was found between gap and surrounding species frequencies, which were the highest in the pioneer and the lowest in the old successional stage. We conclude that gaps are relevant for seedling recruitment along the entire primary succession gradient. New species invasions from greater distances were not observed in the gaps. The dominant species on each site were identified to be successful gap colonizers.  相似文献   
9.
Soil seed bank and standing vegetation were investigated on the Rotmoos Glacier foreland (Ötztal, Tyrol, Austria) along the chronosequence (i.e. on the pioneer, early, and late successional stage) as well as on a subalpine pasture beyond the glacier foreland (old successional stage). We aimed to answer the following questions: (1) How large are soil seed banks along the successional gradient? (2) Do the seed banks reflect the actual standing vegetation or do they remember earlier successional stages or do they represent already the next successional stage?  相似文献   
10.
Environmental manipulation studies are integral to determining biological consequences of climate warming. Open Top Chambers (OTCs) have been widely used to assess summer warming effects on terrestrial biota, with their effects during other seasons normally being given less attention even though chambers are often deployed year‐round. In addition, their effects on temperature extremes and freeze‐thaw events are poorly documented. To provide robust documentation of the microclimatic influences of OTCs throughout the year, we analysed temperature data from 20 studies distributed across polar and alpine regions. The effects of OTCs on mean temperature showed a large range (?0.9 to 2.1 °C) throughout the year, but did not differ significantly between studies. Increases in mean monthly and diurnal temperature were strongly related (R2 = 0.70) with irradiance, indicating that PAR can be used to predict the mean warming effect of OTCs. Deeper snow trapped in OTCs also induced higher temperatures at soil/vegetation level. OTC‐induced changes in the frequency of freeze‐thaw events included an increase in autumn and decreases in spring and summer. Frequency of high‐temperature events in OTCs increased in spring, summer and autumn compared with non‐manipulated control plots. Frequency of low‐temperature events was reduced by deeper snow accumulation and higher mean temperatures. The strong interactions identified between aspects of ambient environmental conditions and effects of OTCs suggest that a detailed knowledge of snow depth, temperature and irradiance levels enables us to predict how OTCs will modify the microclimate at a particular site and season. Such predictive power allows a better mechanistic understanding of observed biotic response to experimental warming studies and for more informed design of future experiments. However, a need remains to quantify OTC effects on water availability and wind speed (affecting, for example, drying rates and water stress) in combination with microclimate measurements at organism level.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号