首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   46篇
  免费   1篇
  2021年   3篇
  2020年   4篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   2篇
  2015年   1篇
  2014年   1篇
  2013年   2篇
  2012年   7篇
  2011年   3篇
  2010年   2篇
  2009年   1篇
  2008年   1篇
  2007年   2篇
  2006年   4篇
  2005年   2篇
  2004年   2篇
  2003年   1篇
  1995年   1篇
  1994年   1篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
排序方式: 共有47条查询结果,搜索用时 46 毫秒
1.
Many developmental traits that are critical to the survival of the organism are also robust. These robust traits are resistant to phenotypic change in the face of variation. This presents a challenge to evolution. In this article, we asked whether and how a well-established robust trait, Drosophila segment patterning, changed over the evolutionary history of the genus. We compared segment position scaled to body length at the first-instar larval stage among 12 Drosophila species. We found that relative segment position has changed many times across the phylogeny. Changes were frequent, but primarily small in magnitude. Phylogenetic analysis demonstrated that rates of change in segment position are variable along the Drosophila phylogenetic tree, and that these changes can occur in short evolutionary timescales. Correlation between position shifts of segments decreased as the distance between two segments increased, suggesting local control of segment position. The posterior-most abdominal segment showed the highest magnitude of change on average, had the highest rate of evolution between species, and appeared to be evolving more independently as compared to the rest of the segments. This segment was exceptionally elongated in the cactophilic species in our dataset, raising questions as to whether this change may be adaptive.  相似文献   
2.
3.
Kalay G  Wittkopp PJ 《PLoS genetics》2010,6(11):e1001222
cis-regulatory DNA sequences known as enhancers control gene expression in space and time. They are central to metazoan development and are often responsible for changes in gene regulation that contribute to phenotypic evolution. Here, we examine the sequence, function, and genomic location of enhancers controlling tissue- and cell-type specific expression of the yellow gene in six Drosophila species. yellow is required for the production of dark pigment, and its expression has evolved largely in concert with divergent pigment patterns. Using Drosophila melanogaster as a transgenic host, we examined the expression of reporter genes in which either 5' intergenic or intronic sequences of yellow from each species controlled the expression of Green Fluorescent Protein. Surprisingly, we found that sequences controlling expression in the wing veins, as well as sequences controlling expression in epidermal cells of the abdomen, thorax, and wing, were located in different genomic regions in different species. By contrast, sequences controlling expression in bristle-associated cells were located in the intron of all species. Differences in the precise pattern of spatial expression within the developing epidermis of D. melanogaster transformants usually correlated with adult pigmentation in the species from which the cis-regulatory sequences were derived, which is consistent with cis-regulatory evolution affecting yellow expression playing a central role in Drosophila pigmentation divergence. Sequence comparisons among species favored a model in which sequential nucleotide substitutions were responsible for the observed changes in cis-regulatory architecture. Taken together, these data demonstrate frequent changes in yellow cis-regulatory architecture among Drosophila species. Similar analyses of other genes, combining in vivo functional tests of enhancer activity with in silico comparative genomics, are needed to determine whether the pattern of regulatory evolution we observed for yellow is characteristic of genes with rapidly evolving expression patterns.  相似文献   
4.
The present study aims to examine the effect of supplementation of zinc on the distribution of various elements in the sera of diabetic rats subjected to an acute swimming exercise. A total of 80 Sprague–Dawley-type adult male rats were equally allocated to one of eight groups: Group 1, general; Group 2, zinc-supplemented; Group 3, zinc-supplemented diabetic; Group 4, swimming control; Group 5, zinc-supplemented swimming; Group 6, zinc-supplemented diabetic swimming; Group 7, diabetic swimming; and Group 8, diabetes. The rats were injected with 40 mg/kg/day subcutaneous streptozotocin (STZ) twice, with a 24-h interval between two injections. Zinc was supplemented at a dose of 6 mg/kg/day (ip) for 4 weeks. Blood samples were collected at the end of the 4-week study, and serum levels of lead, cobalt, molybdenum, chrome, sulfur, magnesium, manganese, sodium, potassium, phosphorus, copper, iron, calcium, zinc, and selenium (mg/L) were determined with atomic emission. The lowest molybdenum, chrome, copper, iron, potassium, magnesium, sodium, phosphorus, lead, selenium, and zinc values were obtained in Group 7 and 8. These same parameters were higher in the swimming exercise group (Group 4), relative to all other groups. The values in zinc-supplemented groups were found lower than the values in Group 4, but higher than those in Group 6 and 7. The results obtained from the study demonstrate that acute swimming exercise and diabetes affect the distribution of various elements in the serum, while zinc supplementation can prevent the negative conditions associated with both exercise and diabetes.  相似文献   
5.
Antimicrobial peptides have been found throughout living nature, yet antimicrobial sequences may still lie hidden within a wide variety of proteins. A rational strategy was developed to select interesting domains, based on the presumed common features of antimicrobial peptides, and to release these from accessible and safe proteins. In silico proteolysis simulations of bovine lactoferrin (bLF) with selected endoproteinases predicted the liberation of peptides that encompasses a cationic amphipathic alpha-helix. Three predicted peptides were synthesized and tested for their biological activity, demonstrating that one single enzyme was sufficient to obtain an antimicrobial peptide. The proof of principle demonstrated that a 32-mer fragment isolated from the endoproteinase AspN digestion of bLF possessed strong antimicrobial activity. Moreover, desalted crude digest had improved activity over native bLF. Hence, selective digestion of bLF increases its antimicrobial activity by release of antimicrobial stretches.  相似文献   
6.
The autosomal-recessive form of popliteal pterygium syndrome, also known as Bartsocas-Papas syndrome, is a rare, but frequently lethal disorder characterized by marked popliteal pterygium associated with multiple congenital malformations. Using Affymetrix 250K SNP array genotyping and homozygosity mapping, we mapped this malformation syndrome to chromosomal region 21q22.3. Direct sequencing of RIPK4 (receptor-interacting serine/threonine kinase protein 4) showed a homozygous transversion (c.362T>A) that causes substitution of a conserved isoleucine with asparagine at amino acid position 121 (p.Ile121Asn) in the serine/threonine kinase domain of the protein. Additional pathogenic mutations-a homozygous transition (c.551C>T) that leads to a missense substitution (p.Thr184Ile) at a conserved position and a homozygous one base-pair insertion mutation (c.777_778insA) predicted to lead to a premature stop codon (p.Arg260ThrfsX14) within the kinase domain-were observed in two families. Molecular modeling of the kinase domain showed that both the Ile121 and Thr184 positions are critical for the protein's stability and kinase activity. Luciferase reporter assays also demonstrated that these mutations are critical for the catalytic activity of RIPK4. RIPK4 mediates activation of the nuclear factor-κB (NF-κB) signaling pathway and is required for keratinocyte differentiation and craniofacial and limb development. The phenotype of Ripk4(-/-) mice is consistent with the human phenotype presented herein. Additionally, the spectrum of malformations observed in the presented families is similar, but less severe than the conserved helix-loop-helix ubiquitous kinase (CHUK)-deficient human fetus phenotype; known as Cocoon syndrome; this similarity indicates that RIPK4 and CHUK might function via closely related pathways to promote keratinocyte differentiation and epithelial growth.  相似文献   
7.
Kalay Z  Fujiwara TK  Kusumi A 《PloS one》2012,7(3):e32948
Confinement of molecules in specific small volumes and areas within a cell is likely to be a general strategy that is developed during evolution for regulating the interactions and functions of biomolecules. The cellular plasma membrane, which is the outermost membrane that surrounds the entire cell, was considered to be a continuous two-dimensional liquid, but it is becoming clear that it consists of numerous nano-meso-scale domains with various lifetimes, such as raft domains and cytoskeleton-induced compartments, and membrane molecules are dynamically trapped in these domains. In this article, we give a theoretical account on the effects of molecular confinement on reversible bimolecular reactions in a partitioned surface such as the plasma membrane. By performing simulations based on a lattice-based model of diffusion and reaction, we found that in the presence of membrane partitioning, bimolecular reactions that occur in each compartment proceed in bursts during which the reaction rate is sharply and briefly increased even though the asymptotic reaction rate remains the same. We characterized the time between reaction bursts and the burst amplitude as a function of the model parameters, and discussed the biological significance of the reaction bursts in the presence of strong inhibitor activity.  相似文献   
8.
9.
Bee disease caused by spore-forming Paenibacillus larvae and Paenibacillus alvei is a serious problem for honey production. Thus, there is an ongoing effort to find an effective agent that shows broad biocidal activity with minimal environmental hazard. In this study, the biocidal effect of maltose reduced silver nanoparticles (AgNPs) is evaluated against American foulbrood and European foulbrood pathogens. The results demonstrate that the maltose reduced AgNPs are excellent short and long-term biocides against P. larvae isolates. The long-term effect suggests that the Ag+ ions are released from the AgNPs with increasing time in a controlled manner.  相似文献   
10.
The mechanisms by which the diffusion rate in the plasma membrane (PM) is regulated remain unresolved, despite their importance in spatially regulating the reaction rates in the PM. Proposed models include entrapment in nanoscale noncontiguous domains found in PtK2 cells, slow diffusion due to crowding, and actin-induced compartmentalization. Here, by applying single-particle tracking at high time resolutions, mainly to the PtK2-cell PM, we found confined diffusion plus hop movements (termed “hop diffusion”) for both a nonraft phospholipid and a transmembrane protein, transferrin receptor, and equal compartment sizes for these two molecules in all five of the cell lines used here (actual sizes were cell dependent), even after treatment with actin-modulating drugs. The cross-section size and the cytoplasmic domain size both affected the hop frequency. Electron tomography identified the actin-based membrane skeleton (MSK) located within 8.8 nm from the PM cytoplasmic surface of PtK2 cells and demonstrated that the MSK mesh size was the same as the compartment size for PM molecular diffusion. The extracellular matrix and extracellular domains of membrane proteins were not involved in hop diffusion. These results support a model of anchored TM-protein pickets lining actin-based MSK as a major mechanism for regulating diffusion.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号