首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   69篇
  免费   7篇
  2023年   1篇
  2022年   1篇
  2021年   2篇
  2018年   3篇
  2017年   1篇
  2015年   1篇
  2014年   1篇
  2013年   2篇
  2012年   1篇
  2011年   2篇
  2009年   1篇
  2008年   2篇
  2007年   2篇
  2006年   5篇
  2005年   6篇
  2004年   2篇
  2003年   6篇
  2002年   7篇
  2001年   3篇
  2000年   1篇
  1999年   5篇
  1998年   1篇
  1997年   1篇
  1992年   2篇
  1990年   1篇
  1989年   2篇
  1988年   4篇
  1987年   1篇
  1986年   2篇
  1985年   1篇
  1983年   2篇
  1982年   1篇
  1979年   1篇
  1977年   2篇
排序方式: 共有76条查询结果,搜索用时 31 毫秒
1.
2.
3.
The assembly of initiation complexes is studied in a protein synthesis initiation assay containing ribosomal subunits, globin [125I]mRNA, [3H]Met-tRNAf, seven purified initiation factors, ATP and GTP. By omitting single components from the initiation assay, specific roles of the initiation factors, ATP and GTP are demonstrated. The initiation factor eIF-2 is required for the binding of Met-tRNAf to the 40 S ribosomal subunit. The initial Met-tRNAf binding to the small ribosomal subunit is a stringent prerequisite for the subsequent mRNA binding. The initiation factors eIF-3, eIF-4A, eIF-4B and eIF-4C together with ATP promote the binding of mRNA to the 40 S initiation complex. The association of the 40 S initiation complex with the 60 S ribosome subunit to form an 80 S initiation complex is mediated by the initiation factor eIF-5 and requires the hydrolysis of GTP. The factor eIF-1 gives a twofold overall stimulation of initiation complex formation. A model of the sequential steps in the assembly of the 80 S initiation complex in mammalian protein synthesis is presented.  相似文献   
4.
The glucose transporter of the bacterial phosphotransferase system mediates sugar transport across the cytoplasmic membrane concomitant with sugar phosphorylation. It consists of a cytoplasmic subunit IIA(Glc) and the transmembrane subunit IICB(Glc). IICB(Glc) was purified to homogeneity by urea/alkali washing of membranes and nickel-chelate affinity chromatography. About 1.5 mg highly pure IICB(Glc) representing 77% of the total activity present in the membranes was obtained from 8g (wet weight) of cells. IICB(Glc) was reconstituted into lipid bilayers by temperature-controlled dialysis to yield small 2D crystals and by a rapid detergent-dilution procedure to yield densely packed vesicles. Electron microscopy and digital image processing of the negatively stained 2D crystals revealed a trigonal lattice with a unit cell size of a = b = 14.5 nm. The unit cell morphology exhibited three dimers of IICB(Glc) surrounding the threefold symmetry center. Single particle analysis of IICB(Glc) in proteoliposomes obtained by detergent dialysis also showed predominantly dimeric structures.  相似文献   
5.
Long-distance bird migration consists of a series of stopovers (for refuelling) and flights, with flights taking little time compared to stopovers. Therefore, it has been hypothesized that birds minimize the total time taken for migration through efficient stopover behaviour. Current optimality models for stopover include (1) the fixed expectation rule and (2) the global update rule. These rules maximize the speed of migration by determining the optimal departure fuel load for a given fuel deposition rate. We were interested in simple behavioural rules approaching the stopover behaviour of real birds and how these rules compare to the time minimizing models above with respect to the total time taken for migration. The simple strategies were to stay at a site (1) until a fixed fuel load was reached or (2) for a constant number of days. We simulated migration of small nocturnal passerine birds across an environment of continuously distributed but variable fuel deposition rates, and investigated the influence of different stopover strategies on the duration of migration. Staying for a constant number of days at each stopover site, irrespective of the fuel deposition rate, resulted in only slightly longer than minimum values for migration duration. Additionally, the constant stopover duration, e.g. 10 days, may change by a day or two (per stopover) without having a large effect on total migration duration. There is therefore a possibility that real birds may be close to optimal migration speed without the need for very complex behaviour. When assessing the sensitivity of migration duration to factors other than stopover duration, we found that flight costs, search and settling time, mean fuel deposition rate and the accuracy in the choice of flight direction were the factors with the largest influence. Our results suggest that migrating birds can approximate optimal stopover duration relatively easy with a simple rule, and that other factors, e.g. those above, are more relevant for travel time.  相似文献   
6.
Cyclized subunits of the E. coli glucose transporter were produced in vivo by intein mediated trans-splicing. IIA(Glc) is a beta-sandwich protein, IICB(Glc) spans the membrane eight times. Genes encoding the circularly permuted precursors U(Cdelta)-IIA(Glc)-U(Ndelta) and U(Cdelta)-IICB(Glc)-U(Ndelta) were assembled from DNA fragments encoding the 3' and 5' segments of the recA intein of M. tuberculosis and crr and ptsG of E. coli, respectively. A 20-residues long, Ala-Pro rich linker peptide and/or a histidine tag were used to join the native N- and C-termini in the cyclized proteins. The cyclized proteins complemented growth of glucose auxotrophic strains. Purified, cyclized IIA(Glc) and IICB(Glc) had 100 and 25%, respectively, of wild-type glucose phosphotransferase activity. They had an increased electrophoretic mobility, which decreased upon linearization of the proteins with chymotrypsin. Cyclized IIA(Glc) displayed increased stability against temperature and GuHCl-induced unfolding (75 vs. 70 degrees C; 1.52 vs. 1.05 M).  相似文献   
7.
Beutler R  Kaufmann M  Ruggiero F  Erni B 《Biochemistry》2000,39(13):3745-3750
The IICB(Glc) subunit of the glucose transporter acts by a mechanism which couples vectorial translocation with phosphorylation of the substrate. It contains 8 transmembrane segments connected by 4 periplasmic, 2 short, 1 long (80 residues), cytoplasmic loops and an independently folding cytoplasmic domain at the C-terminus. Random DNase I cleavage, EcoRI linker insertion, and screening for transport-active mutants afforded 12 variants with between 46% and 116% of wild-type sugar phosphorylation activity. They carried inserts of up to 29 residues and short deletions in periplasmic loops 1, 2, and 3, in the long cytoplasmic loop 3, and in the linker region between the membrane spanning IIC(Glc) and the cytoplasmic IIB(Glc) domains. Disruption of the gene at the sites of linker insertion decreased the expression level and diminished phosphotransferase activity to between 7% and 32%. IICB(Glc) with a discontinuity in the cytoplasmic loop was purified to homogeneity as a stable complex. It was active only if encoded by a dicistronic operon but not if encoded by two genes on two different replicons, suggesting that spatial proximity of the nascent polypeptide chains is important for folding and membrane assembly.  相似文献   
8.
9.
Dihydroxyacetone kinases are a family of sequence-related enzymes that utilize either ATP or a protein of the phosphoenolpyruvate:sugar phosphotransferase system (PTS) as a source of high energy phosphate. The PTS is a multicomponent system involved in carbohydrate uptake and control of carbon metabolism in bacteria. Phylogenetic analysis suggests that the PTS-dependent dihydroxyacetone kinases evolved from an ATP-dependent ancestor. Their nucleotide binding subunit, an eight-helix barrel of regular up-down topology, retains ADP as phosphorylation site for the double displacement of phosphate from a phospho-histidine of the PTS protein to dihydroxyacetone. ADP is bound essentially irreversibly with a t((1/2)) of 100 min. Complexation with ADP increases the thermal unfolding temperature of dihydroxyacetone L from 40 (apo-form) to 65 degrees C (holoenzyme). ADP assumes the same role as histidines, cysteines, and aspartic acids in histidine kinases and PTS proteins. This conversion of a substrate binding site into a cofactor binding site reflects a remarkable instance of parsimonious evolution.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号