首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   219篇
  免费   16篇
  2023年   1篇
  2022年   2篇
  2021年   2篇
  2020年   4篇
  2019年   3篇
  2018年   7篇
  2017年   9篇
  2016年   2篇
  2015年   7篇
  2014年   9篇
  2013年   17篇
  2012年   12篇
  2011年   24篇
  2010年   10篇
  2009年   7篇
  2008年   17篇
  2007年   17篇
  2006年   13篇
  2005年   9篇
  2004年   11篇
  2003年   6篇
  2002年   5篇
  2001年   3篇
  2000年   8篇
  1999年   7篇
  1998年   2篇
  1996年   2篇
  1995年   1篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
  1990年   5篇
  1989年   2篇
  1987年   2篇
  1986年   1篇
  1982年   2篇
  1981年   2篇
排序方式: 共有235条查询结果,搜索用时 15 毫秒
1.
The physiological role of the thromboxane A2 (TXA2) receptor expressed on glial cells remains unclear. We previously reported that 1321N1 human astrocytoma cells pretreated with dibutyryl cyclic AMP (dbcAMP) became swollen in response to U46619, a TXA2 analogue. In the present study, we examined the detailed mechanisms of TXA2 receptor-mediated cell swelling in 1321N1 cells. The cell swelling caused by U46619 was suppressed by expression of p115-RGS, an inhibitory peptide of Gα12/13 pathway and C3 toxin, an inhibitory protein for RhoA. The swelling was also inhibited by treatment with Y27632, a Rho kinase inhibitor and 5-(ethyl-N-isopropyl)amiloride (EIPA), a Na+/H+-exchanger inhibitor. Furthermore, cell swelling was suppressed by the pretreatment with aquaporin inhibitors mercury chloride or phloretin in a concentration-dependent manner, suggesting that aquaporins are involved in U46619-induced 1321N1 cell swelling. In fact, U46619 caused [3H]H2O influx into the cells, which was inhibited by p115-RGS, C3 toxin, EIPA, mercury chloride and phloretin. This is the first report that the TXA2 receptor mediates water influx through aquaporins in astrocytoma cells via TXA2 receptor-mediated activation of Gα12/13, Rho A, Rho kinase and Na+/H+-exchanger.  相似文献   
2.
PGJ2 and delta 12PGJ2 (1 microM to 30 microM) inhibited the growth of human astrocytoma cells (1321N1) in a time-dependent manner within 48 hrs, determined by [3H]thymidine incorporation into acid-insoluble fraction or amounts of protein. The EC50 values for PGJ2 and delta 12PGJ2 were approximately 8 microM and 6 microM, respectively. [3H]Thymidine incorporation to acid insoluble fraction was inhibited by these PGs within 1 hr, indicating that these PGs rapidly affect cell functions. Although it has been reported that an increase in cyclic AMP inhibits cell growth, PGJ2 and delta 12PGJ2, but not PGE1, reduced isoproterenol (10 microM)-induced accumulation of cyclic AMP, suggesting that PGJ2 and delta 12PGJ2 may disturb adenylate cyclase system, which might be independent on cell growth. On the other hand, these PGs inhibited the incorporation of [3H]inositol into phospholipid fraction within 6 hrs. Furthermore, PGJ2 and delta 12PGJ2 inhibited carbachol- and/or histamine-induced accumulation of inositol phosphates with a similar dose-dependency to their inhibitions of cell growth. In membrane preparations, however, PGJ2 and delta 12PGJ2 failed to inhibit GTP gamma S (10 microM)- nor Ca2+ (1 mM)-induced accumulation of inositol phosphates. The site of PGJ2 or delta 12PGJ2 in inhibition of inositol phosphate accumulation would not be phospholipase C nor a putative GTP binding protein involved in activation of phospholipase C. The present results indicate that PGJ2 and delta 12PGJ2 inhibit cell growth in human astrocytoma cells and the inhibition of phosphoinositide turnover by these PGs might be involved in the inhibition of cell growth.  相似文献   
3.
4.
Transforming growth factor-ß1 (TGF-β1) is a multifunctional cytokine that is involved in various pathophysiological processes, including cancer progression and fibrotic disorders. Here, we show that treatment with TGF-β1 (5 ng/mL) induced downregulation of cyclooxygenase-2 (COX-2), leading to reduced synthesis of prostaglandin E2 (PGE2), in human lung cancer A549 cells. Treatment of cells with specific inhibitors of COX-2 or PGE2 receptor resulted in growth inhibition, indicating that the COX-2/PGE2 pathway contributes to proliferation in an autocrine manner. TGF-β1 treatment induced growth inhibition, which was attenuated by exogenous PGE2. TGF-β1 is also a potent inducer of epithelial mesenchymal transition (EMT), a phenotype change in which epithelial cells differentiate into fibroblastoid cells. Supplementation with PGE2 or PGE2 receptor EP4 agonist PGE1-alcohol, as compared with EP1/3 agonist sulprostone, inhibited TGF-β1-induced expression of fibronectin and collagen I (extracellular matrix components). Exogenous PGE2 or PGE2 receptor agonists also suppressed actin remodeling induced by TGF-β1. These results suggest that PGE2 has an anti-fibrotic effect. We conclude that TGF-β1-induced downregulation of COX-2/PGE2 signaling is involved in facilitation of fibrotic EMT response in A549 cells.  相似文献   
5.
6.
Chitin-binding protein 21 (CBP21) from Serratia marcescens is a lytic polysaccharide monooxygenase that contains a copper ion as a cofactor. We aimed to elucidate the unfolding mechanism of CBP21 and the effects of Cu2+ on its structural stability at pH 5.0. Thermal unfolding of both apo- and holoCBP21 was reversible. ApoCBP21 unfolded in a simple two-state transition manner. The peak temperature of the DSC curve, tp, for holoCBP21 (74.4°C) was about nine degrees higher than that for apoCBP21 (65.6°C). The value of tp in the presence of excess Cu2+ was around 75°C, indicating that Cu2+ does not dissociate from the protein molecule during unfolding. The unfolding mechanism of holoCBP21 was considered to be as follows: N∙Cu2+ ⇌ U∙Cu2+, where N and U represent the native and unfolded states, respectively. Urea-induced equilibrium unfolding analysis showed that holoCBP21 was stabilized by 35 kJ mol−1 in terms of the Gibbs energy change for unfolding (pH 5.0, 25°C), compared with apoCBP21. The increased stability of holoCBP21 was considered to result from the structural stabilization of the protein-Cu2+ complex itself.  相似文献   
7.
Twenty novel simple alkyl isocyanides derived from citronellol were synthesized and evaluated for their antifouling activity and toxicity against cypris larvae of the barnacle, Balanus amphitrite. The anti-barnacle activity of the synthesized isocyanides was in the EC50 range of 0.08–1.49 μg ml?1. Simple isocyanides containing a benzoate and chloro group showed the most potent anti-barnacle activity. In addition, none of the synthesized compounds showed significant toxicity and LC50 values were <10 μg ml?1. The LC50/EC50 ratios of almost all of the synthesized compounds were >102. The results indicate that these simple isocyanides are promising low-toxicity antifouling agents.  相似文献   
8.
Reorganization of the actin cytoskeleton is responsible for dynamic regulation of endothelial cell (EC) barrier function. Circumferential actin bundles (CAB) promote formation of linear adherens junctions (AJs) and tightening of EC junctions, whereas formation of radial stress fibers (RSF) connected to punctate AJs occurs during junction remodeling. The small GTPase Rap1 induces CAB formation to potentiate EC junctions; however, the mechanism underlying Rap1-induced CAB formation remains unknown. Here, we show that myotonic dystrophy kinase–related CDC42-binding kinase (MRCK)-mediated activation of non-muscle myosin II (NM-II) at cell–cell contacts is essential for Rap1-induced CAB formation. Our data suggest that Rap1 induces FGD5-dependent Cdc42 activation at cell–cell junctions to locally activate the NM-II through MRCK, thereby inducing CAB formation. We further reveal that Rap1 suppresses the NM-II activity stimulated by the Rho–ROCK pathway, leading to dissolution of RSF. These findings imply that Rap1 potentiates EC junctions by spatially controlling NM-II activity through activation of the Cdc42–MRCK pathway and suppression of the Rho–ROCK pathway.  相似文献   
9.
Creation of new potent antifouling active compounds is important for the development of environmentally friendly antifouling agents. Fifteen isocyanide congeners derived from proteinogenic amino acids were synthesized, and the antifouling activity and toxicity of these compounds against cypris larvae of the barnacle Balanus amphitrite were investigated. All synthesized amino acid‐isocyanides exhibited potent anti‐barnacle activity with EC50 values of 0.07 – 10.34 μg/ml after 120 h exposure without significant toxicity. In addition, seven compounds showed more than 95% settlement inhibition of the cypris larvae at 10 μg/ml after 120 h exposure without any mortality observed. Considering their structure, these amino acid‐isocyanides would eventually be biodegraded to their original nontoxic amino acids. These should be useful for further research focused on the development of environmentally friendly antifoulants.  相似文献   
10.
Twelve simple linear isocyanides were synthesized and examined for antifouling activity and toxicity against cyprid larvae of the barnacle, Balanus amphitrite. Larval settlement was inhibited, with EC50 values of 0.046-1.90 microg ml(-1), and they were much less toxic (LD50 values ranging over 21.28 microg ml(-1)) than CuSO4 (EC50 0.30 microg ml(-1) and LD50 2.95 microg ml(-1)). The data indicate that simple linear isocyanides are promising non-toxic antifouling agents.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号