首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   4篇
  2022年   1篇
  2018年   2篇
  2016年   1篇
  2015年   3篇
  2014年   3篇
  2013年   2篇
  2012年   2篇
  2011年   1篇
  2010年   2篇
  2007年   2篇
  2005年   1篇
  1999年   1篇
  1997年   1篇
  1996年   1篇
  1988年   1篇
  1975年   1篇
排序方式: 共有25条查询结果,搜索用时 546 毫秒
1.

Background  

The bacterial biothreat agents Burkholderia mallei and Burkholderia pseudomallei are the cause of glanders and melioidosis, respectively. Genomic and epidemiological studies have shown that B. mallei is a recently emerged, host restricted clone of B. pseudomallei.  相似文献   
2.

Introduction

Positron Emission Tomography - Computer Tomography (PET-CT) is an interesting imaging technique to visualize Ankylosing Spondylitis (AS) activity using specific PET tracers. Previous studies have shown that the PET tracers [18F]FDG and [11C](R)PK11195 can target inflammation (synovitis) in rheumatoid arthritis (RA) and may therefore be useful in AS. Another interesting tracer for AS is [18F]Fluoride, which targets bone formation. In a pilot setting, the potential of PET-CT in imaging AS activity was tested using different tracers, with Magnetic Resonance Imaging (MRI) and conventional radiographs as reference.

Methods

In a stepwise approach different PET tracers were investigated. First, whole body [18F]FDG and [11C](R)PK11195 PET-CT scans were obtained of ten AS patients fulfilling the modified New York criteria. According to the BASDAI five of these patients had low and five had high disease activity. Secondly, an extra PET-CT scan using [18F]Fluoride was made of two additional AS patients with high disease activity. MRI scans of the total spine and sacroiliac joints were performed, and conventional radiographs of the total spine and sacroiliac joints were available for all patients. Scans and radiographs were visually scored by two observers blinded for clinical data.

Results

No increased [18F]FDG and [11C](R)PK11195 uptake was noticed on PET-CT scans of the first 10 patients. In contrast, MRI demonstrated a total of five bone edema lesions in three out of 10 patients. In the two additional AS patients scanned with [18F]Fluoride PET-CT, [18F]Fluoride depicted 17 regions with increased uptake in both vertebral column and sacroiliac joints. In contrast, [18F]FDG depicted only three lesions, with an uptake of five times lower compared to [18F]Fluoride, and again no [11C](R)PK11195 positive lesions were found. In these two patients, MRI detected nine lesions and six out of nine matched with the anatomical position of [18F]Fluoride uptake. Conventional radiographs showed structural bony changes in 11 out of 17 [18F]Fluoride PET positive lesions.

Conclusions

Our PET-CT data suggest that AS activity is reflected by bone activity (formation) rather than inflammation. The results also show the potential value of PET-CT for imaging AS activity using the bone tracer [18F]Fluoride. In contrast to active RA, inflammation tracers [18F]FDG and [11C](R)PK11195 appeared to be less useful for AS imaging.  相似文献   
3.
Few‐layer ultrathin nanosheets and ultrasmall quantum dots of black phosphorus (BP) have attracted increasing research interest due to their fascinating properties including a tunable bandgap, high carrier mobility, and ambipolar conduction ability. These excellent properties together with their unique structures make BP derivatives promising candidates for a wide range of device applications. In this research news, the latest advancements in the synthesis, properties, and applications of BP and its derivatives are highlighted. In particular, the focus is on the use of these rising star materials for emerging solar cells, in terms of both theoretical predictions and experimental investigations. Finally, the authors' personal perspectives on potential future research directions are provided.  相似文献   
4.
Fibroblast growth factor (FGF2) regulates endothelial and melanoma cell migration. The binding of FGF2 to its receptor requires N‐sulfated heparan sulfate (HS) glycosamine. We have previously reported that Epac1, an exchange protein activated by cAMP, increases N‐sulfation of HS in melanoma. Therefore, we examined whether Epac1 regulates FGF2‐mediated cell–cell communication. Conditioned medium (CM) of melanoma cells with abundant expression of Epac1 increased migration of human umbilical endothelial cells (HUVEC) and melanoma cells with poor expression of Epac1. CM‐induced increase in migration was inhibited by antagonizing FGF2, by the removal of HS and by the knockdown of Epac1. In addition, knockdown of Epac1 suppressed the binding of FGF2 to FGF receptor in HUVEC, and in vivo angiogenesis in melanoma. Furthermore, knockdown of Epac1 reduced N‐sulfation of HS chains attached to perlecan, a major secreted type of HS proteoglycan that mediates the binding of FGF2 to FGF receptor. These data suggested that Epac1 in melanoma cells regulates melanoma progression via the HS–FGF2‐mediated cell–cell communication.  相似文献   
5.
The Nedd8 conjugation pathway is conserved from yeast to humans and is essential in many organisms. Nedd8 is conjugated to cullin proteins in a process that alters SCF E3 ubiquitin ligase activity, and it is presumed that Nedd8 deconjugation would reverse these effects. We now report the X-ray structures of the human Nedd8-specific protease, Den1, in a complex with the inhibitor Nedd8 aldehyde, thus revealing a model for the tetrahedral transition state intermediate generated during proteolysis. Although Den1 is closely related to the SUMO-specific protease family (Ulp/Senp family), structural analysis of the interface suggests determinants involved in Nedd8 selectivity by Den1 over other ubiquitin-like family members and suggests how the Ulp/Senp architecture has been modified to interact with different ubiquitin-like modifiers.  相似文献   
6.
BackgroundIn the past decade, several countries have seen gradual replacement of endemic multi-resistant healthcare-associated methicillin-resistant Staphylococcus aureus (MRSA) with clones that are more susceptible to antibiotic treatment. One example is Singapore, where MRSA ST239, the dominant clone since molecular profiling of MRSA began in the mid-1980s, has been replaced by ST22 isolates belonging to EMRSA-15, a recently emerged pandemic lineage originating from Europe.ResultsWe investigated the population structure of MRSA in Singaporean hospitals spanning three decades, using whole genome sequencing. Applying Bayesian phylogenetic methods we report that prior to the introduction of ST22, the ST239 MRSA population in Singapore originated from multiple introductions from the surrounding region; it was frequently transferred within the healthcare system resulting in a heterogeneous hospital population. Following the introduction of ST22 around the beginning of the millennium, this clone spread rapidly through Singaporean hospitals, supplanting the endemic ST239 population. Coalescent analysis revealed that although the genetic diversity of ST239 initially decreased as ST22 became more dominant, from 2007 onwards the genetic diversity of ST239 began to increase once more, which was not associated with the emergence of a sub-clone of ST239. Comparative genomic analysis of the accessory genome of the extant ST239 population identified that the Arginine Catabolic Mobile Element arose multiple times, thereby introducing genes associated with enhanced skin colonization into this population.ConclusionsOur results clearly demonstrate that, alongside clinical practice and antibiotic usage, competition between clones also has an important role in driving the evolution of nosocomial pathogen populations.

Electronic supplementary material

The online version of this article (doi:10.1186/s13059-015-0643-z) contains supplementary material, which is available to authorized users.  相似文献   
7.

Background

Methicillin-resistant Staphylococcus aureus (MRSA) is a major cause of hospital-associated infection, but there is growing awareness of the emergence of multidrug-resistant lineages in community settings around the world. One such lineage is ST772-MRSA-V, which has disseminated globally and is increasingly prevalent in India. Here, we present the complete genome sequence of DAR4145, a strain of the ST772-MRSA-V lineage from India, and investigate its genomic characteristics in regards to antibiotic resistance and virulence factors.

Results

Sequencing using single-molecule real-time technology resulted in the assembly of a single continuous chromosomal sequence, which was error-corrected, annotated and compared to nine draft genome assemblies of ST772-MRSA-V from Australia, Malaysia and India. We discovered numerous and redundant resistance genes associated with mobile genetic elements (MGEs) and known core genome mutations that explain the highly antibiotic resistant phenotype of DAR4145. Staphylococcal toxins and superantigens, including the leukotoxin Panton-Valentinin Leukocidin, were predominantly associated with genomic islands and the phage φ-IND772PVL. Some of these mobile resistance and virulence factors were variably present in other strains of the ST772-MRSA-V lineage.

Conclusions

The genomic characteristics presented here emphasize the contribution of MGEs to the emergence of multidrug-resistant and highly virulent strains of community-associated MRSA. Antibiotic resistance was further augmented by chromosomal mutations and redundancy of resistance genes. The complete genome of DAR4145 provides a valuable resource for future investigations into the global dissemination and phylogeography of ST772-MRSA-V.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1599-9) contains supplementary material, which is available to authorized users.  相似文献   
8.
Our previous report suggested the potential role of the exchange protein directly activated by cyclic AMP (Epac) in melanoma metastasis via heparan sulfate (HS)-mediated cell migration. In order to obtain conclusive evidence that Epac1 plays a critical role in modification of HS and melanoma metastasis, we extensively investigated expression and function of Epac1 in human melanoma samples and cell lines. We have found that, in human melanoma tissue microarray, protein expression of Epac1 was higher in metastatic melanoma than in primary melanoma. In addition, expression of Epac1 positively correlated with that of N-sulfated HS, and N-deacetylase/N-sulfotransferase-1 (NDST-1), an enzyme that increases N-sulfation of HS. Further, an Epac agonist increased, but ablation of Epac1 decreased, expressions of NDST-1, N-sulfated HS, and cell migration in various melanoma cell lines. Finally, C8161 cells with stable knockdown of Epac1 showed a decrease in cell migration, and metastasis in mice. These data suggest that Epac1 plays a critical role in melanoma metastasis presumably because of modification of HS.  相似文献   
9.
The mammalian cellular microenvironment is shaped by soluble factors and structural components, the extracellular matrix, providing physical support, regulating adhesion and signalling. A global, quantitative mass spectrometry strategy, combined with bioinformatics data processing, was developed to assess proteome differences in the microenvironment of primary human fibroblasts. We studied secreted proteins of fibroblasts from normal and pathologically altered skin and their post‐translational modifications. The influence of collagen VII, an important structural component, which is lost in genetic skin fragility, was used as model. Loss of collagen VII had a global impact on the cellular microenvironment and was associated with proteome alterations highly relevant for disease pathogenesis including decrease in basement membrane components, increase in dermal matrix proteins, TGF‐β and metalloproteases, but not higher protease activity. The definition of the proteome of fibroblast microenvironment and its plasticity in health and disease identified novel disease mechanisms and potential targets of intervention.  相似文献   
10.
Although it has been shown that Epac1 mRNA is expressed ubiquitously and Epac2 mRNA predominantly in the brain and endocrine tissues, developmental and pathophysiological changes of these molecules have not been characterized. Developmental changes were analyzed in murine heart, brain, kidneys, and lungs by RT-PCR analysis, which revealed more drastic developmental changes of Epac2 mRNA than Epac1. Only the Epac2 mRNA in kidney showed a transient expression pattern with dramatic decline into adulthood. In addition to developmental changes, we found that Epac gene expression was upregulated in myocardial hypertrophy induced by chronic isoproterenol infusion or pressure overload by transverse aortic banding. Both Epac1 and Epac2 mRNA were upregulated in isoproterenol-induced left ventricular hypertrophy, whereas only Epac1 was increased in pressure overload-induced hypertrophy. Stimulation of H9c2, cardiac myoblast cells, with fetal calf serum, which can induce myocyte hypertrophy, upregulated Epac1 protein expression. We also demonstrated that Epac was the limiting moiety, relative to Rap, in the Epac-Rap signaling pathway in terms of stoichiometry and that Epac stimulation led to the activation of ERK1/2. Our data suggest the functional involvement of Epac in organogenesis and also in physiological as well as pathophysiological processes, such as cardiac hypertrophy. Furthermore, our results suggest the importance of the stoichiometry of Epac over that of Rap in cellular biological effects.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号