首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   110篇
  免费   13篇
  123篇
  2022年   2篇
  2021年   1篇
  2019年   1篇
  2018年   1篇
  2017年   2篇
  2016年   4篇
  2015年   3篇
  2014年   2篇
  2013年   6篇
  2012年   8篇
  2011年   6篇
  2010年   1篇
  2009年   3篇
  2008年   4篇
  2007年   4篇
  2006年   3篇
  2005年   7篇
  2004年   4篇
  2003年   4篇
  2002年   5篇
  2001年   1篇
  2000年   1篇
  1999年   3篇
  1997年   2篇
  1993年   2篇
  1992年   2篇
  1991年   4篇
  1990年   1篇
  1988年   3篇
  1987年   4篇
  1986年   2篇
  1985年   3篇
  1984年   4篇
  1983年   2篇
  1982年   5篇
  1981年   1篇
  1979年   2篇
  1978年   1篇
  1977年   3篇
  1975年   3篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
排序方式: 共有123条查询结果,搜索用时 15 毫秒
1.
HPLC-studies on nonmercapt-mercapt conversion of human serum albumin   总被引:2,自引:0,他引:2  
Human mercaptalbumin (HMA) and nonmercaptalbumin (HNA) could be separated by high-performance liquid chromatography (HPLC) at neutral pH. Using HPLC, the present authors found the nonmercapt-mercapt conversion (HNA----HMA) during hemodialysis and the mercapt-nonmercapt conversion (HMA----HNA) after hemodialysis in chronic renal failure, indicating HMA as the covalent carrier protein for sulfur-containing amino acids.  相似文献   
2.
RecA protein from E. coli binds more strongly to single stranded DNA than to duplex molecules. Using duplex DNA that contains single stranded gaps, we have studied the protection by RecA protein at various concentrations, of restriction sites as a function of their distance from the single stranded region. We show that the binding of RecA protein, initiated in the single stranded region, extends progressively along the adjoining duplex in the 5' to 3' direction with respect to the single stranded region. The strand exchange reaction is known to proceed in the same direction.  相似文献   
3.
Summary The RecA protein ofEscherichia coli is essential for genetic recombination and postreplicational repair of DNA. In vitro, RecA protein promotes strand transfer reactions between full length linear duplex and single stranded circular DNA of X174 to form heteroduplex replicative form II-like structures (Cox and Lehman 1981a). In a similar way, it transfers one strand of a short duplex restriction fragment to a single stranded circle. Both reactions require RecA and single strand binding protein (SSB) in amounts sufficient to saturate the ssDNA. The rate and extent of strand transfer is enhanced considerably when SSB is added after preincubation of the DNA with RecA protein. In contrast, SSB protein is not required for RecA protein catalysed reciprocal strand exchanges between regions of duplex DNA. These results indicate that while SSB is necessary for efficient transfer between linear duplex and ssDNA to form a single heteroduplex, it is not required for branch migration reactions between duplex molecules that form two heteroduplexes.Abbreviations SSB single strand binding protein - ssDNA single stranded DNA - X phage X174 - bp base pairs - ATP[S] adenosine 5-O-(gamma-thiotriphosphate)  相似文献   
4.
Production of alpha-fetoprotein (AFP) was determined in single cells of hepatoma McA-RH7777 and in the clones of their progeny. To elucidate the heritability of this trait in a series of cell generations, a variety of local hemolysis in gel was devised. According to the method the cells and red cells conjugated with protein A were placed on the polylysine covered surface and layered with agarose gel containing antibodies. AFP production by single cells was determined from the formation of plaques--areas of red cell hemolysis. The cells forming the plaques (+AFP) and not forming them (-AFP) were distinguished and their reproduction was followed up. After 7-14 days the cells were fixed and stained by the immunoperoxidase technique with antibodies to AFP. High efficacy of the cloning has been demonstrated for both +AFP- and -AFP-cells (69 and 71%). Negative cells preserved their phenotype more frequently, producing homogenous negative clones, whereas +AFP cells gave "negative" clones in 1/3 of the cases. Both cells gave mixed clones in a small percentage of the cases. At present the AFP trait in these cells is being studied by recloning.  相似文献   
5.
The thoracic duct of Wistar strain rats was cannulated during 5 days for studying the effect of selective lymphocyte depletion on the lymphoid tissue. A technique for the continuous infusion of cell-free lymph, whole lymph of Eagle's medium to the rat with the thoracic duct fistula is described in detail. The prolonged drainage of lymph from rats was followed by lymphopenia, sever atrophy of lymphoid tissues and the depletion of small lymphocytes in the thymus-dependent areas of spleen and lymph nodes. The infusion of cell-free lymph into the drained rat resulted in the recovery of the weight of lymphoid tissues and in the massive proliferation and accumulation of large cells with prominent nucleoli and intensely pyroninophilic cytoplasm in the lymphocyte depleted areas of the peripheral lymphoid tissues and thymic cortex. There was histological evidence that the large pyroninophilic cells developed well in the spleen and tended to localize preferentially around the periarteriolar region through the marginal zone bridging channels to the red pulp. The infusion of Eagle's medium was found ineffective in restoring the weight of the lymphoid tissues and in bringing about the proliferation of lymphoid cells. The rats infused with whole lymph showed almost similar findings biologically and histologically to those of sham-operated rats.  相似文献   
6.
Biomechanics of chelipeds in some decapod crustaceans   总被引:2,自引:0,他引:2  
The major chelipeds of five species of decapod crustaceans were studied with reference to lever system mechanical advantage, pattern of occlusive geometry, and force/pressure developed during cheliped closure by intact animals. Every cheliped type was found to possess a linear array of two to four distinctive regions of occlusion. The factors responsible for the differences in occlusive design are discussed. It is suggested that crustacean major chelipeds must be regarded as regionally-specialized, multifunctional appendages.  相似文献   
7.
8.
A major goal in cell signaling research is the quantification of phosphorylation pharmacodynamics following perturbations. Traditional methods of studying cellular phospho-signaling measure one analyte at a time with poor standardization, rendering them inadequate for interrogating network biology and contributing to the irreproducibility of preclinical research. In this study, we test the feasibility of circumventing these issues by coupling immobilized metal affinity chromatography (IMAC)-based enrichment of phosphopeptides with targeted, multiple reaction monitoring (MRM) mass spectrometry to achieve precise, specific, standardized, multiplex quantification of phospho-signaling responses. A multiplex immobilized metal affinity chromatography- multiple reaction monitoring assay targeting phospho-analytes responsive to DNA damage was configured, analytically characterized, and deployed to generate phospho-pharmacodynamic curves from primary and immortalized human cells experiencing genotoxic stress. The multiplexed assays demonstrated linear ranges of ≥3 orders of magnitude, median lower limit of quantification of 0.64 fmol on column, median intra-assay variability of 9.3%, median inter-assay variability of 12.7%, and median total CV of 16.0%. The multiplex immobilized metal affinity chromatography- multiple reaction monitoring assay enabled robust quantification of 107 DNA damage-responsive phosphosites from human cells following DNA damage. The assays have been made publicly available as a resource to the community. The approach is generally applicable, enabling wide interrogation of signaling networks.Cell signaling research is faced with the challenging task of interrogating increasingly large numbers of analytes in “systems biology” approaches, while maintaining the high standards of integrity and reproducibility traditionally associated with the scientific approach. For example, studies interrogating complex systems, such as protein signaling networks, require quantification technologies capable of sensitive, specific, multiplexable, and reproducible application. However, recent reports have highlighted alarmingly high rates of irreproducibility in fundamental biological and pre-clinical studies (1, 2), as well as poor performance of affinity reagents used in traditional proteomic assay and detection platforms (3, 4). There is an imminent need for high quality assays, including highly characterized standards and detailed documentation of processes and procedures (5). To improve the translation of cell signaling discoveries into clinical application, we need reproducible and transferable technologies that enable higher throughput quantification of protein phosphorylation.Signaling dynamics through post-translational modifications (e.g. phosphorylation) are predominantly measured by Western blotting. Although this technique has led to many discoveries and is the de facto “gold standard,” it suffers from many drawbacks. Western blotting is a low throughput approach applied to individual analytes (i.e. no multiplexing) and is susceptible to erroneous interpretation when applied quantitatively (6). Alternative immunoassay platforms have emerged (e.g. immunohistochemistry, ELISA, mass cytometry, and bead-based or planar arrays), but suffer from similar limitations, namely specificity issues (because of cross-reactivity of antibodies), poor standardization, and difficulties in multiplexing.One alternative for quantifying phosphorylation is targeted, multiple reaction monitoring (MRM)1 MS, a widely deployed technique in clinical laboratories for quantification of small molecules (7, 8). MRM is now also well established for precise and specific quantification of endogenous, proteotypic peptides relative to spiked-in stable isotope-labeled internal standards (911), and MRM can be applied to phosphopeptides (1218). MRM assays can be run at high multiplex levels (1921) and can be standardized to be highly reproducible across laboratories (2224), even on an international stage (25). Because phosphorylation typically occurs at sub-stoichiometric levels and because phosphopeptides must compete for ionization with more abundant peptides, mass spectrometry-based analysis of phosphorylation requires an analyte enrichment step. Immuno-affinity enrichment approaches using anti-phospho-tyrosine antibodies (26) or panels of antibodies targeting signaling nodes (27) have been implemented with shotgun mass spectrometry. Although anti-peptide antibodies can also be used to enrich individual phosphopeptides upstream of MRM (28), the generation of these reagents is time-consuming and costly, limiting widespread uptake.Phosphopeptide enrichment based on metal affinity chromatography has recently matured into a reproducible approach (29). Immobilized metal affinity chromatography (IMAC) is widely used in discovery phosphoproteomic studies to enrich phosphopeptides upstream of shotgun-based mass spectrometry (30, 31). We hypothesized that a subset of the cellular phosphoproteome with favorable binding characteristics to the IMAC resin might be reproducibly recovered for quantification when coupled with quantitative MRM mass spectrometry, enabling robust IMAC-MRM assays without the need for an antibody.In this report, we: (1) demonstrate the feasibility of generating analytically robust, multiplex IMAC-MRM assays for quantifying cellular phospho-signaling, (2) present a semi-automated, 96-well format magnetic bead-based protocol for IMAC enrichment, (3) provide a catalogue of phosphopeptides that are highly amenable to IMAC-MRM quantification, and (4) make publicly available standard operating protocols (SOP) and fit-for-purpose analytical validation data for IMAC-MRM assays targeting 107 phospho-analytes, providing a community resource for study of the DNA damage response. The data suggest that the IMAC-MRM approach is generally applicable to signaling pathways, enabling wider interrogation of signaling networks.  相似文献   
9.
Human serum albumin is a mixture of mercapt- (HMA, reduced form) and nonmercaptalbumin (HNA, oxidized form). We studied the mercapt↔nonmercapt conversion of human serum albumin, which reflects the redox state of the extracellular fluids, in cardiac and other common surgical patients using high-performance liquid chromatography. Mean values of [(HMA)/(HMA + HNA)] ± standard deviation [fHMA ± σ], for patients who received common surgery (group 1) and cardiac surgery (group 2) at the start of anesthesia were0.636±0.50(n=83) and 0.615±0.062(n=14), respectively. fHMA values were markedly lower than those for healthy male adults of 0.750±0.028(n=28). fHMA values increased at 24 h after the start of anesthesia and decreased on the 4th postoperative day in most of the patients. These postoperative changes were prominent in surgical cardiac patients. Although fHMA values after the 7th postoperative day recovered to those at the start of anesthesia in almost all of common surgical patients, those in cardiac surgical patients, never recovered even on the 21st postoperative day.  相似文献   
10.
Among the seven tyrosine autophosphorylation sites identified in the intracellular domain of tyrosine kinase fibroblast growth factor receptor-1 (FGFR1), five of them are dispensable for FGFR1-mediated mitogenic signaling. The possibility of dissociating the mitogenic activity of basic FGF (FGF2) from its urokinase-type plasminogen activator (uPA)-inducing capacity both at pharmacological and structural levels prompted us to evaluate the role of these autophosphorylation sites in transducing FGF2-mediated uPA upregulation. To this purpose, L6 myoblasts transfected with either wild-type (wt) or various FGFR1 mutants were evaluated for the capacity to upregulate uPA production by FGF2. uPA was induced in cells transfected with wt-FGFR1, FGFR1-Y463F, -Y585F, -Y730F, -Y766F, or -Y583/585F mutants. In contrast, uPA upregulation was prevented in L6 cells transfected with FGFR1-Y463/583/585/730F mutant (FGFR1–4F) or with FGFR1-Y463/583/585/730/766F mutant (FGFR1–5F) that retained instead a full mitogenic response to FGF2; however, preservation of residue Y730 in FGFR1-Y463/583/585F mutant (FGFR1–3F) and FGFR1-Y463/583/585/766F mutant (FGFR1–4Fbis) allows the receptor to transduce uPA upregulation. Wild-type FGFR1, FGFR1–3F, and FGFR1–4F similarly bind to a 90-kDa tyrosine-phosphorylated protein and activate Shc, extracellular signal-regulated kinase (ERK)2, and JunD after stimulation with FGF2. These data, together with the capacity of the ERK kinase inhibitor PD 098059 to prevent ERK2 activation and uPA upregulation in wt-FGFR1 cells, suggest that signaling through the Ras/Raf-1/ERK kinase/ERK/JunD pathway is necessary but not sufficient for uPA induction in L6 transfectants. Accordingly, FGF2 was able to stimulate ERK1/2 phosphorylation and cell proliferation, but not uPA upregulation, in L6 cells transfected with the FGFR1-Y463/730F mutant, whereas the FGFR1-Y583/585/730F mutant was fully active. We conclude that different tyrosine autophosphorylation requirements in FGFR1 mediate cell proliferation and uPA upregulation induced by FGF2 in L6 cells. In particular, phosphorylation of either Y463 or Y730, dispensable for mitogenic signaling, represents an absolute requirement for FGF2-mediated uPA induction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号