首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
  6篇
  2021年   2篇
  2020年   1篇
  2015年   1篇
  2013年   1篇
  2012年   1篇
排序方式: 共有6条查询结果,搜索用时 0 毫秒
1
1.
Previous structural characterizations of marsupial milk oligosaccharides had been performed in only two macropod species, the tammar wallaby and the red kangaroo. To clarify the homology and heterogeneity of milk oligosaccharides among marsupial species, which could provide information on their evolution, the oligosaccharides of the koala milk carbohydrate fraction were characterized in this study. Neutral and acidic oligosaccharides were separated from the carbohydrate fraction of milk of the koala, a non-macropod marsupial, and characterized by 1H-nuclear magnetic resonance spectroscopy. The structures of the neutral saccharides were found to be Gal(β1-4)Glc (lactose), Gal(β1-3)Gal(β1-4)Glc (3′-galactosyllactose), Gal(β1-3)Gal(β1-3)Gal(β1-4)Glc (3′,3″-digalactosyllactose), Gal(β1-3)[Gal(β1-4)GlcNAc(β1-6)]Gal(β1-4)Glc (lacto-N-novopentaose I) and Gal(β1-3){Gal(β1-4)[Fuc(α1-3)]GlcNAc(β1-6)}Gal(β1-4)Glc (fucosyl lacto-N-novopentaose I), while those of the acidic saccharides were Neu5Ac(α2-3)Gal(β1-4)Glc (3′-SL), Neu5Ac(α2-3)Gal(β1-3)Gal(β1-4)Gal (sialyl 3′-galactosyllactose), Neu5Ac(α2-3)Gal(β1-3)[Gal(β1-4)GlcNAc(β1-6)]Gal(β1-4)Glc (sialyl lacto-N-novopentaose a), Gal(β1-3)[Neu5Ac(α2-6)Gal(β1-4)GlcNAc(β1-6)]Gal(β1-4)Glc (sialyl lacto-N-novopentaose b), Gal(β1-3)[Neu5Ac(α2-3)Gal(β1-4)GlcNAc(β1-6)]Gal(β1-4)Glc (sialyl lacto-N-novopentaose c), and Neu5Ac(α2-3)Gal(β1-3){Gal(β1-4)[Fuc(α1-3)]GlcNAc(β1-6)}Gal(β1-4)Glc (fucosyl sialyl lacto-N-novopentaose a). The neutral oligosaccharides, other than fucosyl lacto-N-novopentaose I, a novel hexasaccharide, had been found in milk of the tammar wallaby, a macropod marsupial, while the acidic oligosaccharides, other than fucosyl sialyl lacto-N-novopentaose a had been identified in milk carbohydrate of the red kangaroo. The presence of fucosyl oligosaccharides is a significant feature of koala milk, in which it differs from milk of the tammar wallaby and the red kangaroo.  相似文献   
2.
3.
4.
5.

The milk oligosaccharides were studied for two species of the Carnivora: the American black bear (Ursus americanus, family Ursidae, Caniformia), and the cheetah, (Acinonyx jubatus, family Felidae, Feliformia). Lactose was the most dominant saccharide in cheetah milk, while this was a minor saccharide and milk oligosaccharides predominated over lactose in American black bear milk. The structures of 8 neutral saccharides from American black bear milk were found to be Gal(β1–4)Glc (lactose), Fuc(α1–2)Gal(β1–4)Glc (2′-fucosyllactose), Gal(α1–3)Gal(β1–4)Glc (isoglobotriose), Gal(α1–3)[Fuc(α1–2)]Gal(β1–4)Glc (B-tetrasaccharide), Gal(α1–3)[Fuc(α1–2)]Gal(β1–4)[Fuc(α1–3)]Glc (B-pentasaccharide), Fuc(α1–2)Gal(β1–4)[Fuc(α1–3)]GlcNAc(β1–3)Gal(β1–4)Glc (difucosyl lacto-N-neotetraose), Gal(α1–3)Gal(β1–4)[Fuc(α1–3)]GlcNAc(β1–3)Gal(β1–4)Glc (monogalactosyl monofucosyl lacto-N-neotetraose) and Gal(α1–3)Gal(β1–4)GlcNAc(β1–3)Gal(β1–4)Glc (Galili pentasaccharide). Structures of 5 acidic saccharides were also identified in black bear milk: Neu5Ac(α2–3)Gal(β1–4)Glc (3′-sialyllactose), Neu5Ac(α2–6)Gal(β1–4)GlcNAc(β1–3)[Fuc(α1–2)Gal(β1–4)GlcNAc(β1–6)]Gal(β1–4)Glc (monosialyl monofucosyl lacto-N-neohexaose), Neu5Ac(α2–6)Gal(β1–4)GlcNAc(β1–3)[Gal(α1–3)Gal(β1–4)GlcNAc(β1–6)]Gal(β1–4)Glc (monosialyl monogalactosyl lacto-N-neohexaose), Neu5Ac(α2–6)Gal(β1–4)GlcNAc(β1–3){Gal(α1–3)Gal(β1–4)[Fuc(α1–3)]GlcNAc(β1–6)}Gal(β1–4)Glc (monosialyl monogalactosyl monofucosyl lacto-N-neohexaose), and Neu5Ac(α2–6)Gal(β1–4)GlcNAc(β1–3){Gal(α1–3)[Fuc(α1–2)]Gal(β1–4)[Fuc(α1–3)]GlcNAc(β1–6)}Gal(β1–4)Glc (monosialyl monogalactosyl difucosyl lacto-N-neohexaose). A notable feature of some of these milk oligosaccharides is the presence of B-antigen (Gal(α1–3)[Fuc(α1–2)]Gal), α-Gal epitope (Gal(α1–3)Gal(β1–4)Glc(NAc)) and Lewis x (Gal(β1–4)[Fuc(α1–3)]GlcNAc) structures within oligosaccharides. By comparison to American black bear milk, cheetah milk had a much smaller array of oligosaccharides. Two cheetah milks contained Gal(α1–3)Gal(β1–4)Glc (isoglobotriose), while another cheetah milk did not, but contained Gal(β1–6)Gal(β1–4)Glc (6′-galactosyllactose) and Gal(β1–3)Gal(β1–4)Glc (3′-galactosyllactose). Two cheetah milks contained Gal(β1–4)GlcNAc(β1–3)[Gal(β1–4)GlcNAc(β1–6)]Gal(β1–4)Glc (lacto-N-neohexaose), and one cheetah milk contained Gal(β1–4)Glc-3’-O-sulfate. Neu5Ac(α2–8)Neu5Ac(α2–3)Gal(β1–4)Glc (disialyllactose) was the only sialyl oligosaccharide identified in cheetah milk. The heterogeneity of milk oligosaccharides was found between both species with respect of the presence/absence of B-antigen and Lewis x. The variety of milk oligosaccharides was much greater in the American black bear than in the cheetah. The ratio of milk oligosaccharides-to-lactose was lower in cheetah (1:1–1:2) than American black bear (21:1) which is likely a reflection of the requirement for a dietary supply of N-acetyl neuraminic acid (sialic acid), in altricial ursids compared to more precocial felids, given the role of these oligosaccharides in the synthesis of brain gangliosides and the polysialic chains on neural cell adhesion.

  相似文献   
6.
The structures of milk oligosaccharides were characterized for four strepsirrhine primates to examine the extent to which they resemble milk oligosaccharides in other primates. Neutral and acidic oligosaccharides were isolated from milk of the greater galago (Galagidae: Otolemur crassicaudatus), aye-aye (Daubentoniidae: Daubentonia madagascariensis), Coquerel's sifaka (Indriidae: Propithecus coquereli) and mongoose lemur (Lemuridae: Eulemur mongoz), and their chemical structures were characterized by (1)H-NMR spectroscopy. The oligosaccharide patterns observed among strepsirrhines did not appear to correlate to phylogeny, sociality or pattern of infant care. Both type I and type II neutral oligosaccharides were found in the milk of the aye-aye, but type II predominate over type I. Only type II oligosaccharides were identified in other strepsirrhine milks. α3'-GL (isoglobotriose, Gal(α1-3)Gal(β1-4)Glc) was found in the milks of Coquerel's sifaka and mongoose lemur, which is the first report of this oligosaccharide in the milk of any primate species. 2'-FL (Fuc(α1-2)Gal(β1-4)Glc) was found in the milk of an aye-aye with an ill infant. Oligosaccharides containing the Lewis x epitope were found in aye-aye and mongoose lemur milk. Among acidic oligosaccharides, 3'-N-acetylneuraminyllactose (3'-SL-NAc, Neu5Ac(α2-3)Gal(β1-4)Glc) was found in all studied species, whereas 6'-N-acetylneuraminyllactose (6'-SL-NAc, Neu5Ac(α2-6)Gal(β1-4)Glc) was found in all species except greater galago. Greater galago milk also contained 3'-N-glycolylneuraminyllactose (3'-SL-NGc, Neu5Gc(α2-3)Gal(β1-4)Glc). The finding of a variety of neutral and acidic oligosaccharides in the milks of strepsirrhines, as previously reported for haplorhines, suggests that such constituents are ancient rather than derived features, and are as characteristic of primate lactation is the classic disaccharide, lactose.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号