首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   368篇
  免费   33篇
  2023年   2篇
  2022年   7篇
  2021年   5篇
  2020年   10篇
  2019年   9篇
  2018年   9篇
  2017年   5篇
  2016年   14篇
  2015年   13篇
  2014年   19篇
  2013年   20篇
  2012年   24篇
  2011年   20篇
  2010年   14篇
  2009年   14篇
  2008年   18篇
  2007年   17篇
  2006年   9篇
  2005年   15篇
  2004年   15篇
  2003年   16篇
  2002年   13篇
  2001年   7篇
  2000年   5篇
  1999年   6篇
  1998年   7篇
  1997年   8篇
  1996年   5篇
  1995年   2篇
  1994年   6篇
  1993年   2篇
  1992年   3篇
  1991年   8篇
  1990年   2篇
  1989年   3篇
  1986年   5篇
  1985年   2篇
  1984年   7篇
  1983年   5篇
  1982年   2篇
  1981年   4篇
  1979年   3篇
  1976年   5篇
  1974年   1篇
  1973年   3篇
  1972年   1篇
  1970年   1篇
  1969年   1篇
  1967年   2篇
  1961年   1篇
排序方式: 共有401条查询结果,搜索用时 857 毫秒
1.
2.
Gent MP  Enoch HZ 《Plant physiology》1983,71(3):562-567
A mathematical model of the processes involved in carbon metabolism is described that predicts the influence of temperature on the growth of plants. The model assumes that the rate of production of dry matter depends both on the temperature and the level of nonstructural carbohydrate. The level of nonstructural carbohydrate is determined by the rates of photosynthesis, growth, and maintenance respiration. The model describes the rate of growth and dark respiration, and the levels of carbohydrate seen in vegetative growth of carnation and tomato. The model suggests that the growth of plants at low temperatures is limited by a shortage of respiratory energy, whereas at high temperatures growth is limited by the shortage of carbohydrate. Thermoperiodism, wherein a warm day and cool night results in faster growth than does constant temperature, is explained by the model as an increase in the level of nonstructural carbohydrate which promotes the rate of growth relative to the rate of maintenance respiration.  相似文献   
3.
The significance of DNA repair to human health has been well documented by studies on xeroderma pigmentosum (XP) patients, who suffer a dramatically increased risk of cancer in sun-exposed areas of their skin [1] and [2]. This autosomal recessive disorder has been directly associated with a defect in nucleotide excision–repair (NER) [1] and [2]. Like human XP individuals, mice carrying homozygous mutations in XP genes manifest a predisposition to skin carcinogenesis following exposure to ultraviolet (UV) radiation [3], [4] and [5]. Recent studies have suggested that, in addition to roles in apoptosis [6] and cell-cycle checkpoint control [7] in response to DNA damage, p53 protein may modulate NER [8]. Mutations in the p53 gene have been observed in 50% of all human tumors [9] and have been implicated in both the early [10] and late [11] stages of skin cancer. To examine the consequences of a combined deficiency of the XPC and the p53 proteins in mice, we generated double-mutant animals. We document a spectrum of neural tube defects in XPC p53 mutant embryos. Additionally, we show that, following exposure to UV-B radiation, XPC p53 mutant mice have more severe solar keratosis and suffer accelerated skin cancer compared with XPC mutant mice that are wild-type with respect to p53.  相似文献   
4.
The effects of the genotype and growth medium composition on callus induction and shoot regeneration from tomato (Lycopersicon esculentum Mill) anthers were studied. Five male sterile varieties, homozygous for the recessive gene ms 1035, their isogenic fertile counterparts, and nineteen sterile mutants from an F2 population segregating for ms 1035, were tested. Callus induction and shoot formation were found to be affected by the genotype. The presence of the mutant gene ms 1035 greatly increased callus induction. A significant interaction concerning callus induction was found between the ms 1035 gene and the general genetic background. In most of the plants shoot regeneration from the anthers was associated with various degrees of callus production. However, there was no correlation between callus production and the ability to regenerate plants from that callus. Anthers isolated from plants which were heterozygous for the recessive leaf marker trifoliate, regenerated diploid plants with trifoliate leaves. The plants retained the trifoliate phenotype for over six months in culture under non-aseptic condition. Since the trifoliate phenotype appears only in the homozygous recessive state, the evidence that these trifoliate plants are doubled haploids of sporogenic origin is discussed.  相似文献   
5.
Philodendron plants propagated in liquid shake or bioreactor cultures proliferated profusely in the presence of paclobutrazol (PAC) and to a lesser extent in the presence of ancymidol (ANC). The growth retardants inhibited leaf development and induced the formation of bud clusters. Short transient treatments with low concentrations (1.7–3.4 M) of the growth retardants limited leaf growth and proliferation to a lesser extent than higher concentrations (6.8–17 M). The growth retardants had a carryover dwarfing effect in the semi-solid hardening medium, which was more pronounced at the higher concentrations or prolonged exposure periods. Regenerated plants resumed normal growth 3–6 weeks after transplanting. Treatment with growth retardants may become a useful method in the prevention of abnormal leaf growth in large-scale liquid cultures, as well as in enhancing bud proliferation.  相似文献   
6.
The influence of various c oncentrations of K⁺, nitrogen sources, and inoculation with root-knot nematode Meloidogyne javanica were evaluated in tomato plants. Increased potassium concentration increased top and root fresh weights of intact plants and fresh weights of excised roots. Nitrate-fertilized plants weighed more than plants receiving ammonium independent of the K level in the medium. Nematode counts on roots were not affected by nutritional differences in intact or excised roots. In intact roots a high percentage of males was recorded at low K⁺ levels, whereas in excised roots the proportion of males in the population rose as the K⁺ levels increased. Inoculated intact roots accumulated K⁺ when the level of potassium supply was low; infected excised roots contained less K⁺ than did nematode-free roots.  相似文献   
7.
Abstract

L-Asparaginase (L-ASNase) is an important enzyme used to treat acute lymphoblastic leukemia, recombinantly produced in a prokaryotic expression system. Exploration of alternatives production systems like as extracellular expression in microorganisms generally recognized as safe (such as Pichia pastoris Glycoswitch®) could be advantageous, in particular, if this system is able to produce homogeneous glycosylation. Here, we evaluated extracellular expression into Glycoswitch® using two different strains constructions containing the asnB gene coding for Erwinia chrysanthemi L-ASNase (with and without His-tag), in order to find the best system for producing the extracellular and biologically active protein. When the His-tag was absent, both cell expression and protein secretion processes were considerably improved. Three-dimensional modeling of the protein suggests that additional structures (His-tag) could adversely affect native conformation and folding from L-ASNase and therefore the expression and cell secretion of this enzyme.  相似文献   
8.
The interaction of naringenin (Nar) and its neohesperidoside, naringin (Narn), with calf thymus deoxyribonucleic acid (ctDNA) in the absence and the presence of β-cyclodextrin (β-CD) was investigated. The interaction of Nar and Narn with β-CD/ctDNA was analyzed by using absorption, fluorescence, and molecular modeling techniques. Docking studies showed the existence of hydrogen bonding, electrostatic and phobic interaction of Nar and Narn with β-CD/DNA. 1:2 stoichiometric inclusion complexes were observed for Nar and Narn with β-CD. With the addition of ctDNA, Nar and Narn resulted into the fluorescence quenching phenomenon in the aqueous solution and β-CD solution. The binding constant K b and the number of binding sites were found to be different for Nar and Narn bindings with DNA in aqueous and β-CD solution. The difference is attributed to the structural difference between Nar and Narn with neohesperidoside moiety present in Narn.  相似文献   
9.
The corticotropin‐releasing hormone type I receptor (CRHR1) gene has been implicated in the liability for neuropsychiatric disorders, particularly under conditions of stress. On the basis of the hypothesized effects of CRHR1 variation on stress reactivity, measures of adulthood traumatic stress exposure were analyzed for their interaction with CRHR1 haplotypes and single‐nucleotide polymorphisms (SNPs) in predicting the risk for alcoholism. Phenotypic data on 2533 non‐related Caucasian individuals (1167 alcoholics and 1366 controls) were culled from the publically available Study of Addiction: Genetics and Environment genome‐wide association study. Genotypes were available for 19 tag SNPs. Logistic regression models examined the interaction between CRHR1 haplotypes/SNPs and adulthood traumatic stress exposure in predicting alcoholism risk. Two haplotype blocks spanned CRHR1. Haplotype analyses identified one haplotype in the proximal block 1 (P = 0.029) and two haplotypes in the distal block 2 (P = 0.026, 0.042) that showed nominally significant (corrected P < 0.025) genotype × traumatic stress interactive effects on the likelihood of developing alcoholism. The block 1 haplotype effect was driven by SNPs rs110402 (P = 0.019) and rs242924 (P = 0.019). In block 2, rs17689966 (P = 0.018) showed significant and rs173365 (P = 0.026) showed nominally significant, gene × environment (G × E) effects on alcoholism status. This study extends the literature on the interplay between CRHR1 variation and alcoholism, in the context of exposure to traumatic stress. These findings are consistent with the hypothesized role of the extra hypothalamic corticotropin‐releasing factor system dysregulation in the initiation and maintenance of alcoholism. Molecular and experimental studies are needed to more fully understand the mechanisms of risk and protection conferred by genetic variation at the identified loci .  相似文献   
10.
Nicotine and tonic dopamine (DA) levels [as inferred by catechol‐O‐methyl tranferase (COMT) Val158Met genotype] interact to affect prefrontal processing. Prefrontal cortical areas are involved in response to performance feedback, which is impaired in smokers. We investigated whether there is a nicotine × COMT genotype interaction in brain circuitry during performance feedback of a reward task. We scanned 23 healthy smokers (10 Val/Val homozygotes, 13 Met allele carriers) during two fMRI sessions while subjects were wearing a nicotine or placebo patch. A significant nicotine × COMT genotype interaction for BOLD signal during performance feedback in cortico‐striatal areas was seen. Activation in these areas during the nicotine patch condition was greater in Val/Val homozygotes and reduced in Met allele carriers. During negative performance feedback, the change in activation in error detection areas such as anterior cingulate cortex (ACC)/superior frontal gyrus on nicotine compared to placebo was greater in Val/Val homozygotes compared to Met allele carriers. With transdermal nicotine administration, Val/Val homozygotes showed greater activation with performance feedback in the dorsal striatum, area associated with habitual responding. In response to negative feedback, Val/Val homozygotes had greater activation in error detection areas, including the ACC, suggesting increased sensitivity to loss with nicotine exposure. Although these results are preliminary due to small sample size, they suggest a possible neurobiological mechanism underlying the clinical observation that Val/Val homozygotes, presumably with elevated COMT activity compared to Met allele carriers and therefore reduced prefrontal DA levels, have poorer outcomes with nicotine replacement therapy .  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号