首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
  2021年   2篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2013年   3篇
  2012年   1篇
  2011年   1篇
排序方式: 共有10条查询结果,搜索用时 31 毫秒
1
1.
Abstract

Transient protein–protein complexes are of great importance for organizing multiple enzymatic reactions into productive reaction pathways. Base excision repair (BER), a process of critical importance for maintaining genome stability against a plethora of DNA-damaging factors, involves several enzymes, including DNA glycosylases, AP endonucleases, DNA polymerases, DNA ligases and accessory proteins acting sequentially on the same damaged site in DNA. Rather than being assembled into one stable multisubunit complex, these enzymes pass the repair intermediates between them in a highly coordinated manner. In this review, we discuss the nature and the role of transient complexes arising during BER as deduced from structural and kinetic data. Almost all of the transient complexes are DNA-mediated, although some may also exist in solution and strengthen under specific conditions. The best-studied example, the interactions between DNA glycosylases and AP endonucleases, is discussed in more detail to provide a framework for distinguishing between stable and transient complexes based on the kinetic data.

Communicated by Ramaswamy H. Sarma  相似文献   
2.
Trinucleotide repeat expansion provides a molecular basis for several devastating neurodegenerative diseases. In particular, expansion of a CAG run in the human HTT gene causes Huntington’s disease. One of the main reasons for triplet repeat expansion in somatic cells is base excision repair (BER), involving damaged base excision and repair DNA synthesis that may be accompanied by expansion of the repaired strand due to formation of noncanonical DNA structures. We have analyzed the kinetics of excision of a ubiquitously found oxidized purine base, 8-oxoguanine (oxoG), by DNA glycosylase OGG1 from the substrates containing a CAG run flanked by AT-rich sequences. The values of k 2 rate constant for the removal of oxoG from triplets in the middle of the run were higher than for oxoG at the flanks of the run. The value of k 3 rate constant dropped starting from the third CAG-triplet in the run and remained stable until the 3′-terminal triplet, where it decreased even more. In nuclear extracts, the profile of oxoG removal rate along the run resembled the profile of k 2 constant, suggesting that the reaction rate in the extracts is limited by base excision. The fully reconstituted BER was efficient with all substrates unless oxoG was near the 3′-flank of the run, interfering with the initiation of the repair. DNA polymerase β was able to perform a strand-displacement DNA synthesis, which may be important for CAG run expansion initiated by BER.  相似文献   
3.

Background

Formamidopyrimidine-DNA glycosylase (Fpg) removes abundant pre-mutagenic 8-oxoguanine (oxoG) bases from DNA through nucleophilic attack of its N-terminal proline at C1′ of the damaged nucleotide. Since oxoG efficiently pairs with both C and A, Fpg must excise oxoG from pairs with C but not with A, otherwise a mutation occurs. The crystal structures of several Fpg–DNA complexes have been solved, yet no structure with A opposite the lesion is available.

Results

Here we use molecular dynamic simulation to model interactions in the pre-catalytic complex of Lactococcus lactis Fpg with DNA containing oxoG opposite C or A, the latter in either syn or anti conformation. The catalytic dyad, Pro1–Glu2, was modeled in all four possible protonation states. Only one transition was observed in the experimental reaction rate pH dependence plots, and Glu2 kept the same set of interactions regardless of its protonation state, suggesting that it does not limit the reaction rate. The adenine base opposite oxoG was highly distorting for the adjacent nucleotides: in the more stable syn models it formed non-canonical bonds with out-of-register nucleotides in both the damaged and the complementary strand, whereas in the anti models the adenine either formed non-canonical bonds or was expelled into the major groove. The side chains of Arg109 and Phe111 that Fpg inserts into DNA to maintain its kinked conformation tended to withdraw from their positions if A was opposite to the lesion. The region showing the largest differences in the dynamics between oxoG:C and oxoG:A substrates was unexpectedly remote from the active site, located near the linker joining the two domains of Fpg. This region was also highly conserved among 124 analyzed Fpg sequences. Three sites trapping water molecules through multiple bonds were identified on the protein–DNA interface, apparently helping to maintain enzyme-induced DNA distortion and participating in oxoG recognition.

Conclusion

Overall, the discrimination against A opposite to the lesion seems to be due to incorrect DNA distortion around the lesion-containing base pair and, possibly, to gross movement of protein domains connected by the linker.
  相似文献   
4.
CpG dinucleotides are targets for epigenetic methylation, many of them bearing 5-methylcytosine (mCyt) in the human genome. Guanine in this context can be easily oxidized to 8-oxoguanine (oxoGua), which is repaired by 8-oxoguanine-DNA glycosylase (OGG1). We have studied how methylation affects the efficiency of oxoGua excision from damaged CpG dinucleotides. Methylation of the adjacent cytosine moderately decreased the oxoGua excision rate while methylation opposite oxoGua lowered the rate of product release. Cytosine methylation abolished stimulation of OGG1 by repair endonuclease APEX1. The OGG1 S326C polymorphic variant associated with lung cancer showed poorer base excision and lost sensitivity to the opposite-base methylation. The overall repair in the system reconstituted from purified proteins decreased for CpG with mCyt in the damaged strand.  相似文献   
5.
DNA glycosylases play the opening act in a highly conserved process for excision of damaged bases from DNA called the base excision repair pathway. DNA glycosylases attend to a wide variety of lesions arising from both endogenous and exogenous factors. The types of damage include alkylation, oxidation, and hydrolysis. A major DNA oxidation product is 8-oxoguanine (8-oxoG), a base with a high mutagenic potential. In bacteria, this lesion is repaired by formamidopyrimidine-DNA glycosylase (Fpg), while in the case of humans this function belongs to 8-oxoG-DNA glycosylase (OGG1). We have attempted a comprehensive characterization of 8-oxoG recognition by DNA glycosylases. First, we have obtained thermodynamic parameters for melting of DNA duplexes containing 8-oxoG in all possible nucleotide contexts. The energy of stacking interactions of 8-oxoG was in strict dependence on 8-oxoG nucleotide environment, which may affect the recognition of damage and the efficiency of eversion of 8-oxoG from DNA helix by glycosylases. Next, we established how the flexibility of DNA context affects damage recognition by these enzymes (Kirpota et al., 2011). Then, we have found that DNA containing 8-oxoG next to a single-strand break provides a good substrate for Fpg, as soon as all structural phosphate residues are maintained. Using site-directed mutagenesis, we have addressed the functions of many previously unstudied amino acid residuess that were predicted to be important for Fpg activity by molecular dynamics simulation and phylogenetic analysis. Of note, many substitutions abolished the excision of 8-oxoG, but did not affect the cleavage efficiency of abasic substrates. Finally, we investigated the contribution of separated structural domains of Fpg to specific enzyme-substrate interaction. Surprisingly, despite the absence of the catalytic domain, C-terminal domain of Fpg possessed a low- residual ability to recognize and cleave abasic substrates. Our study sheds light on mechanism details of Fpg and OGG1 activity, with the ultimate goal of understanding how binding energy can be spent by these enzymes for catalysis.  相似文献   
6.
We have used a stepwise increase in ligand complexity approach to estimate the relative contributions of the nucleotide units of DNA containing 7,8-dihydro-8-oxoguanine (oxoG) to its total affinity for human 8-oxoguanine DNA glycosylase (OGG1) and construct thermodynamic models of the enzyme interaction with cognate and non-cognate DNA. Non-specific OGG1 interactions with 10–13 nt pairs within its DNA-binding cleft provides approximately 5 orders of magnitude of its affinity for DNA (ΔG° approximately −6.7 kcal/mol). The relative contribution of the oxoG unit of DNA (ΔG° approximately −3.3 kcal/mol) together with other specific interactions (ΔG° approximately −0.7 kcal/mol) provide approximately 3 orders of magnitude of the affinity. Formation of the Michaelis complex of OGG1 with the cognate DNA cannot account for the major part of the enzyme specificity, which lies in the kcat term instead; the rate increases by 6–7 orders of magnitude for cognate DNA as compared with non-cognate one. The kcat values for substrates of different sequences correlate with the DNA twist, while the KM values correlate with ΔG° of the DNA fragments surrounding the lesion (position from −6 to +6). The functions for predicting the KM and kcat values for different sequences containing oxoG were found.  相似文献   
7.
8.
In contrast to proteins recognizing small-molecule ligands, DNA-dependent enzymes cannot rely solely on interactions in the substrate-binding centre to achieve their exquisite specificity. It is widely believed that substrate recognition by such enzymes involves a series of conformational changes in the enzyme–DNA complex with sequential gates favoring cognate DNA and rejecting nonsubstrates. However, direct evidence for such mechanism is limited to a few systems. We report that discrimination between the oxidative DNA lesion, 8-oxoguanine (oxoG) and its normal counterpart, guanine, by the repair enzyme, formamidopyrimidine-DNA glycosylase (Fpg), likely involves multiple gates. Fpg uses an aromatic wedge to open the Watson–Crick base pair and everts the lesion into its active site. We used molecular dynamics simulations to explore the eversion free energy landscapes of oxoG and G by Fpg, focusing on structural and energetic details of oxoG recognition. The resulting energy profiles, supported by biochemical analysis of site-directed mutants disturbing the interactions along the proposed path, show that Fpg selectively facilitates eversion of oxoG by stabilizing several intermediate states, helping the rapidly sliding enzyme avoid full extrusion of every encountered base for interrogation. Lesion recognition through multiple gating intermediates may be a common theme in DNA repair enzymes.  相似文献   
9.
Molecular Biology - Mycobacterium tuberculosis cells contain two apurinic/apyrimidinic (AP) endonucleases, endonuclease IV (MtbEnd) and exonuclease III (MtbXthA), the former playing a dominant role...  相似文献   
10.
Endutkin  A. V.  Zharkov  D. O. 《Molecular Biology》2021,55(2):193-210
Molecular Biology - The GO system is part of the DNA base excision repair pathway and is required for the error-free repair of 8-oxoguanine (oxoG), one of the most common oxidative DNA lesions. Due...  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号