首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   226篇
  免费   38篇
  2021年   4篇
  2020年   3篇
  2018年   4篇
  2017年   5篇
  2016年   2篇
  2015年   12篇
  2014年   19篇
  2013年   13篇
  2012年   11篇
  2011年   18篇
  2010年   8篇
  2009年   13篇
  2008年   12篇
  2007年   14篇
  2006年   8篇
  2005年   11篇
  2004年   12篇
  2003年   9篇
  2002年   7篇
  2001年   8篇
  2000年   5篇
  1999年   11篇
  1998年   4篇
  1997年   3篇
  1996年   3篇
  1995年   3篇
  1992年   2篇
  1991年   2篇
  1990年   2篇
  1989年   5篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1983年   4篇
  1982年   1篇
  1981年   1篇
  1980年   2篇
  1978年   1篇
  1976年   1篇
  1975年   1篇
  1972年   2篇
  1971年   1篇
  1968年   2篇
  1966年   2篇
  1965年   1篇
  1959年   1篇
  1957年   1篇
  1896年   1篇
  1895年   1篇
排序方式: 共有264条查询结果,搜索用时 265 毫秒
1.
Interleukin-1 (IL-1) is a potent cytokine which possesses the ability to mediate systemic acute phase responses as well as local tissue inflammation. In these studies, we have examined the ability of C5a and C5a des Arg to induce IL-1 production in vitro. Human C5a and C5a des Arg were purified to homogeneity and were found to stimulate IL-1 release from freshly obtained human mononuclear cells into the extracellular medium. Only 2 hr of exposure to the purified complement components were necessary in order to stimulate IL-1 production. The minimal concentration of C5a required was 25 ng/ml, whereas 125 ng/ml of C5a des Arg induced comparable amounts of IL-1. This dose relationship was maintained at higher concentrations (150 ng/ml vs 750 ng/ml, respectively). That the effect was due to the anaphylatoxins themselves, and not endotoxin contamination, was shown by negative Limulus amebocyte lysate tests and employing preincubation of C5a/C5a des Arg with polymyxin B. The latter blocked a wide dose range of endotoxin-stimulated IL-1 production. However, when endotoxin was added to C5a or C5a des Arg, significant synergism in the stimulation of IL-1 production was observed, occurring at various concentrations of either agent. A similar synergism with C5a/C5a des Arg was seen with interferon-gamma. In these studies, IL-1 production was measured by bioassay employing cloned D . 10 . G4 . 1 murine T cells and by radioimmunoassay for human IL-1 beta; using C5a/C5a des Arg as stimulants, there was a high degree of correlation (r = 0.82) between the two assays. Since traumatic, infectious, and inflammatory diseases may result in the simultaneous appearance of these stimuli, the synergism described herein is likely to be clinically relevant.  相似文献   
2.
A neuroattenuated variant bunyavirus, designated RFC/25B.5 (B.5), was selected by serial passage of a reassortant clone (RFC virus) of a California serogroup virus in BHK-21 cells, followed by plaque purification of that passaged stock. Based on its virulence index (ratio of PFU/50% lethal dose), clone B5 was over 40,000-fold less virulent than its unpassaged RFC parent after intracerebral (i.c.) inoculation into adult mice. Clone B.5 also exhibited markedly reduced neuroinvasiveness after subcutaneous injection into neonatal mice, although it retained its ability to replicate and kill suckling mice after i.c. injection. A murine neuroblastoma line (NA cells) can be used as an in vitro surrogate for the adult mouse brain, since clone B.5 replicated to at least 1,000-fold-lower titers in NA cells than did several neurovirulent California serogroup viruses. Clone B.5 replicated in BHK-21 cells at 37 degrees C to titers similar to those achieved by other California serogroup viruses but was temperature sensitive (ts) since its replication was markedly restricted at 38.9 degrees C. Ten ts revertant clones of B.5 virus were selected at 38.9 degrees C, and all of them lost their ts phenotype and regained the ability to replicate to high titer in NA cells and to kill adult mice after i.c. injection. Clone B.5 is the first described California serogroup virus which is truly attenuated after i.c. inoculation, and its availability will permit genetic analysis of bunyavirus neurovirulence.  相似文献   
3.
Tumor necrosis factor-alpha converting enzyme (TACE or ADAM17) is a member of the ADAM (a disintegrin and metalloproteinase) family of type I membrane proteins and mediates the ectodomain shedding of various membrane-anchored signaling and adhesion proteins. TACE is synthesized as an inactive zymogen, which is subsequently proteolytically processed to the catalytically active form. We have identified the proprotein-convertases PC7 and furin to be involved in maturation of TACE. This maturation is negatively influenced by the phorbol ester phorbol-12-myristate-13-acetate (PMA), which decreases the cellular amount of the mature form of TACE in PMA-treated HEK293 and SH-SY5Y cells. Furthermore, we found that stimulation of protein kinase C or protein kinase A signaling pathways did not influence long-term degradation of mature TACE. Interestingly, PMA treatment of furin-deficient LoVo cells did not affect the degradation of mature TACE. By examination of furin reconstituted LoVo cells we were able to exclude the possibility that PMA modulates furin activity. Moreover, the PMA dependent decrease of the mature enzyme form is specific for TACE, as the amount of mature ADAM10 was unaffected in PMA-treated HEK293 and SH-SY5Y cells. Our results indicate that the activation of TACE by the proprotein-convertases PC7 and furin is very similar to the maturation of ADAM10 although there is a significant difference in the cellular stability of the mature enzyme forms after phorbol ester treatment.  相似文献   
4.
BACKGROUND: Specific inhibition of target proteins by antisense oligodeoxynucleotides is an extensively studied experimental approach. This technique is currently being tested in clinical trials applying phosphorothioate-modified oligonucleotides as therapeutic agents. These polyanionic molecules, however, may also exert non-antisense-mediated effects. MATERIALS AND METHODS: We examined the influence of oligonucleotides on lipopolysaccharide (LPS)-stimulated tumor necrosis factor alpha (TNF alpha) synthesis in freshly isolated human peripheral blood mononuclear cells. Oligonucleotides (18 mer) with different degrees of phosphorothioate modification were studied. RESULTS: The addition of phosphorothioate oligonucleotides (5 microM) caused amplification of TNF synthesis of up to 410% compared with the control with LPS alone. Without LPS stimulation, phosphorothioate oligonucleotides did not induce TNF production. We demonstrate that the enhancement of LPS-stimulated TNF production by phosphorothioate oligonucleotides does not rely on the intracellular presence of oligonucleotides and is not mediated by LPS contamination. Partially phosphorothioate-modified oligonucleotides and unmodified oligonucleotides did not increase TNF synthesis. High concentrations of the polyanion heparin reversed the oligonucleotide-induced enhancement of TNF synthesis. CONCLUSIONS: The data suggest that amplification of TNF synthesis may be caused by binding of the polyanionic phosphorothioate oligonucleotide to cationic sites on the cell surface. Such binding sites have been proposed for polyanionic glycoaminoglycans of the extracellular matrix, which have also been described to augment LPS-stimulated TNF synthesis. The present results are relevant to all in vitro studies attempting to influence protein synthesis in monocytes by using phosphorothioate oligonucleotides. The significance of our findings for in vivo applications of phosphorothioates in situations where there is a stimulus for TNF synthesis, such as in sepsis, should be elucidated.  相似文献   
5.
Glycerol was found to unravel the helical conformation of Escherichia coli type 1 fimbriae without appreciable depolymerization. The linearized fimbrial polymers have a diameter of 2 nm, react strongly with a monoclonal antibody directed at an inaccessible epitope on native fimbriae, and display greater mannose-binding activity and trypsin sensitivity than native fimbriae. Removal of glycerol by dialysis results in spontaneous reassembly of the linear polymers into structures morphologically, antigenically, and functionally indistinguishable from native fimbriae.  相似文献   
6.
Cultured bovine capillary endothelial (BCE) cells produce low levels of collagenolytic activity and significant amounts of the serine protease plasminogen activator (PA). When grown in the presence of nanomolar quantities of the tumor promoter 12-O-tetradecanoyl phorbol-13-acetate (TPA), BCE cells produced 5-15 times more collagenolytic activity and 2-10 times more PA than untreated cells. The enhanced production of these enzymes was dependent on the dose of TPA used, with maximal response at 10(-7) to 10(-8) M. Phorbol didecanoate (PDD), an analog of TPA which is an active tumor promoter, also increased protease production. 4-O-methyl-TPA and 4α-PDD, two analogs of TPA which are inactive as tumor promoters, had no effect on protease production. Increased PA and collagenase activities were detected within 7.5 and 19 h, respectively, after the addition of TPA. The TPA-stimulated BCE cells synthesized a urokinase-type PA and a typical vertebrate collagenase. BCE cells were compared with bovine aortic endothelial (BAE) cells and bovine embryonic skin (BES) fibroblasts with respect to their production of protease in response to TPA. Under normal growth conditions, low levels of collagenolyic activity were detected in the culture fluids from BCE, BAE, and BES cells. BCE cells produced 5-13 times the basal levels of collagenolytic activity in response to TPA, whereas BAE cells and BES fibroblasts showed a minimal response to TPA. Both BCE and BAE cells exhibited relatively high basal levels of PA, the production of which was stimulated approximately threefold by the addition of TPA. The observation that BCE cells and not BAE cells produced high levels of both PA and collagenase activities in response to TPA demonstrates a significant difference between these two types of endothelial cells and suggests that the enhanced detectable activities are a property unique to bovine capillary and microvessel and endothelial cells.  相似文献   
7.
In this communication, we have demonstrated that hydrolysis of the nucleotide sugar can cause errors in the detection of an ectoglycosyltransferase. Spleen cell suspensions can incorporate radioactivity when incubated with labeled UDP-galactose, but all the activity is due to decomposition of the nucleotide sugar and uptake of the free sugar. The fibroblast cell lines can incroporate carbohydrate directly from UDP-galactose. Several criteria are presented with can be used to demonstrate that a nucleotide sugar is the direct carbohydrate donor.  相似文献   
8.
Severe Acute Respiratory Syndrome coronavirus 2 (SARS‐CoV‐2) is rapidly spreading around the world. There is no existing vaccine or proven drug to prevent infections and stop virus proliferation. Although this virus is similar to human and animal SARS‐CoVs and Middle East Respiratory Syndrome coronavirus (MERS‐CoVs), the detailed information about SARS‐CoV‐2 proteins structures and functions is urgently needed to rapidly develop effective vaccines, antibodies, and antivirals. We applied high‐throughput protein production and structure determination pipeline at the Center for Structural Genomics of Infectious Diseases to produce SARS‐CoV‐2 proteins and structures. Here we report two high‐resolution crystal structures of endoribonuclease Nsp15/NendoU. We compare these structures with previously reported homologs from SARS and MERS coronaviruses.  相似文献   
9.

Introduction

Current therapies for articular cartilage defects fail to achieve qualitatively sufficient tissue regeneration, possibly because of a mismatch between the speed of cartilage rebuilding and the resorption of degradable implant polymers. The present study focused on the self-healing capacity of resident cartilage cells in conjunction with cell-free and biocompatible (but non-resorbable) bacterial nanocellulose (BNC). This was tested in a novel in vitro bovine cartilage punch model.

Methods

Standardized bovine cartilage discs with a central defect filled with BNC were cultured for up to eight weeks with/without stimulation with transforming growth factor-β1 (TGF-β1. Cartilage formation and integrity were analyzed by histology, immunohistochemistry and electron microscopy. Content, release and neosynthesis of the matrix molecules proteoglycan/aggrecan, collagen II and collagen I were also quantified. Finally, gene expression of these molecules was profiled in resident chondrocytes and chondrocytes migrated onto the cartilage surface or the implant material.

Results

Non-stimulated and especially TGF-β1-stimulated cartilage discs displayed a preserved structural and functional integrity of the chondrocytes and surrounding matrix, remained vital in long-term culture (eight weeks) without signs of degeneration and showed substantial synthesis of cartilage-specific molecules at the protein and mRNA level. Whereas mobilization of chondrocytes from the matrix onto the surface of cartilage and implant was pivotal for successful seeding of cell-free BNC, chondrocytes did not immigrate into the central BNC area, possibly due to the relatively small diameter of its pores (2 to 5 μm). Chondrocytes on the BNC surface showed signs of successful redifferentiation over time, including increase of aggrecan/collagen type II mRNA, decrease of collagen type I mRNA and initial deposition of proteoglycan and collagen type II in long-term high-density pellet cultures. Although TGF-β1 stimulation showed protective effects on matrix integrity, effects on other parameters were limited.

Conclusions

The present bovine cartilage punch model represents a robust, reproducible and highly suitable tool for the long-term culture of cartilage, maintaining matrix integrity and homoeostasis. As an alternative to animal studies, this model may closely reflect early stages of cartilage regeneration, allowing the evaluation of promising biomaterials with/without chondrogenic factors.  相似文献   
10.
In acute ischemic stroke, time from symptom onset to intervention is a decisive prognostic factor. In order to reduce this time, prehospital thrombolysis at the emergency site would be preferable. However, apart from neurological expertise and laboratory investigations a computed tomography (CT) scan is necessary to exclude hemorrhagic stroke prior to thrombolysis. Therefore, a specialized ambulance equipped with a CT scanner and point-of-care laboratory was designed and constructed. Further, a new stroke identifying interview algorithm was developed and implemented in the Berlin emergency medical services. Since February 2011 the identification of suspected stroke in the dispatch center of the Berlin Fire Brigade prompts the deployment of this ambulance, a stroke emergency mobile (STEMO). On arrival, a neurologist, experienced in stroke care and with additional training in emergency medicine, takes a neurological examination. If stroke is suspected a CT scan excludes intracranial hemorrhage. The CT-scans are telemetrically transmitted to the neuroradiologist on-call. If coagulation status of the patient is normal and patient''s medical history reveals no contraindication, prehospital thrombolysis is applied according to current guidelines (intravenous recombinant tissue plasminogen activator, iv rtPA, alteplase, Actilyse).Thereafter patients are transported to the nearest hospital with a certified stroke unit for further treatment and assessment of strokeaetiology. After a pilot-phase, weeks were randomized into blocks either with or without STEMO care. Primary end-point of this study is time from alarm to the initiation of thrombolysis. We hypothesized that alarm-to-treatment time can be reduced by at least 20 min compared to regular care.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号