首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   956篇
  免费   38篇
  994篇
  2024年   6篇
  2023年   5篇
  2022年   18篇
  2021年   28篇
  2020年   13篇
  2019年   16篇
  2018年   21篇
  2017年   15篇
  2016年   33篇
  2015年   51篇
  2014年   62篇
  2013年   69篇
  2012年   97篇
  2011年   76篇
  2010年   47篇
  2009年   53篇
  2008年   58篇
  2007年   50篇
  2006年   55篇
  2005年   41篇
  2004年   36篇
  2003年   33篇
  2002年   29篇
  2001年   7篇
  2000年   4篇
  1999年   12篇
  1998年   5篇
  1997年   7篇
  1996年   6篇
  1995年   2篇
  1994年   3篇
  1993年   2篇
  1992年   4篇
  1991年   3篇
  1989年   1篇
  1987年   2篇
  1985年   5篇
  1984年   2篇
  1983年   3篇
  1982年   1篇
  1979年   1篇
  1973年   1篇
  1972年   4篇
  1969年   1篇
  1968年   1篇
  1967年   2篇
  1966年   3篇
排序方式: 共有994条查询结果,搜索用时 15 毫秒
1.
Proteins are polymeric molecules with many degrees of conformational freedom whose internal energetic interactions are typically screened to small distances. Therefore, in the high-dimensional conformation space of a protein, the energy landscape is locally relatively flat, in contrast to low-dimensional representations, where, because of the induced entropic contribution to the full free energy, it appears funnel-like. Proteins explore the conformation space by searching these flat subspaces to find a narrow energetic alley that we call a hypergutter and then explore the next, lower-dimensional, subspace. Such a framework provides an effective representation of the energy landscape and folding kinetics that does justice to the essential characteristic of high-dimensionality of the search-space. It also illuminates the important role of nonnative interactions in defining folding pathways. This principle is here illustrated using a coarse-grained model of a family of three-helix bundle proteins whose conformations, once secondary structure has formed, can be defined by six rotational degrees of freedom. Two folding mechanisms are possible, one of which involves an intermediate. The stabilization of intermediate subspaces (or states in low-dimensional projection) in protein folding can either speed up or slow down the folding rate depending on the amount of native and nonnative contacts made in those subspaces. The folding rate increases due to reduced-dimension pathways arising from the mere presence of intermediate states, but decreases if the contacts in the intermediate are very stable and introduce sizeable topological or energetic frustration that needs to be overcome. Remarkably, the hypergutter framework, although depending on just a few physically meaningful parameters, can reproduce all the types of experimentally observed curvature in chevron plots for realizations of this fold.  相似文献   
2.
Type I IFN-producing cells (IPC) are sentinels of viral infections. Identification and functional characterization of these cells have been difficult because of their small numbers in blood and tissues and their complex cell surface phenotype. To overcome this problem in mice, mAbs recognizing IPC-specific cell surface molecules have been generated. In this study, we report the identification of new Abs specific for mouse IPC, which recognize the bone marrow stromal cell Ag 2 (BST2). Interestingly, previously reported IPC-specific Abs 120G8 and plasmacytoid dendritic cell Ag-1 also recognize BST2. BST2 is predominantly specific for mouse IPC in naive mice, but is up-regulated on most cell types following stimulation with type I IFNs and IFN-gamma. The activation-induced promiscuous expression of BST2 described in this study has important implications for the use of anti-BST2 Abs in identification and depletion of IPC. Finally, we show that BST2 resides within an intracellular compartment corresponding to the Golgi apparatus, and may be involved in trafficking secreted cytokines in IPC.  相似文献   
3.
Proteins show diverse responses when placed under mechanical stress. The molecular origins of their differing mechanical resistance are still unclear, although the orientation of secondary structural elements relative to the applied force vector is thought to have an important function. Here, by using a method of protein immobilization that allows force to be applied to the same all-beta protein, E2lip3, in two different directions, we show that the energy landscape for mechanical unfolding is markedly anisotropic. These results, in combination with molecular dynamics (MD) simulations, reveal that the unfolding pathway depends on the pulling geometry and is associated with unfolding forces that differ by an order of magnitude. Thus, the mechanical resistance of a protein is not dictated solely by amino acid sequence, topology or unfolding rate constant, but depends critically on the direction of the applied extension.  相似文献   
4.
5.

Background

Preclinical studies strongly suggest that accelerated apoptosis in skeletal myocytes may be involved in the pathogenesis of sarcopenia. However, evidence in humans is sparse. In the present study, we investigated whether apoptotic signaling in the skeletal muscle was associated with indices of muscle mass and function in older persons.

Methodology/Principal Findings

Community-dwelling older adults were categorized into high-functioning (HF) or low-functioning (LF) groups according to their short physical performance battery (SPPB) summary score. Participants underwent an isokinetic knee extensor strength test and 3-dimensional magnetic resonance imaging of the thigh. Vastus lateralis muscle samples were obtained by percutaneous needle biopsy and assayed for the expression of a set of apoptotic signaling proteins. Age, sex, number of comorbid conditions and medications as well as knee extensor strength were not different between groups. HF participants displayed greater thigh muscle volume compared with LF persons. Multivariate partial least squares (PLS) regressions showed significant correlations between caspase-dependent apoptotic signaling proteins and the muscular percentage of thigh volume (R2 = 0.78; Q2 = 0.61) as well as gait speed (R2 = 0.81; Q2 = 0.56). Significant variables in the PLS model of percent muscle volume were active caspase-8, cleaved caspase-3, cytosolic cytochrome c and mitochondrial Bak. The regression model of gait speed was mainly described by cleaved caspase-3 and mitochondrial Bax and Bak. PLS predictive apoptotic variables did not differ between functional groups. No correlation was determined between apoptotic signaling proteins and muscle strength or quality (strength per unit volume).

Conclusions/Significance

Data from this exploratory study show for the first time that apoptotic signaling is correlated with indices of muscle mass and function in a cohort of community-dwelling older persons. Future larger-scale studies are needed to corroborate these preliminary findings and determine if down-regulation of apoptotic signaling in skeletal myocytes will provide improvements in the muscle mass and functional status of older persons.  相似文献   
6.
7.
The chloride channel 2 (CLCN2) gene codes for a protein organized in N- and C-terminal regions with regulatory functions and a transmembrane region which forms the ring of the pore. Mutations in the gene have previously been described in patients with idiopathic familial epilepsy. In this study we looked for new isoforms of CLCN2 and we estimated expression levels by real time PCR in brain tissue containing epileptic foci. Samples used in this study were first analyzed and selected to exclude mutations in the coding region of the gene. Four isoforms (skipping exons 3, 16, 22 and 6/7) were identified and quantified by Real Time PCR and compared with total expression of the gene. Expression of the region common to all CLCN2 isoforms was 50% less in epilepsy-associated brain tissue than in controls. The ratio of the various isoforms was slightly greater in epileptic than control tissue. The greatest difference was recorded in the temporal lobe for the isoform with skipped exon 22. Analysis of these isoforms in brain tissue containing epileptic foci suggests that CLCN2 could be implicated in epilepsy, even in the absence of mutations.  相似文献   
8.
    
  1. Eight polymorphic microsatellites and two insecticide resistance markers (kdr and R81T) were used to investigate the population genetics and demography of resistance mechanisms in field populations of the peach‐potato aphid, Myzus persicae (Sulzer), a global crop pest, in several areas of Italy, notably the north‐east, aiming to determine whether these parameters are linked to population structuring resulting from insecticide selective sweeps.
  2. Individuals collected directly from peach orchards (main primary host) in the spring, especially after control failure, revealed 90 microsatellite alleles, of which approximately one‐third were rare.
  3. Many populations deviated from Hardy–Weinberg expectations, in a few instances as a result of null alleles. FIS values were on average negative (indicating heterozygote excess), whereas FST values (mean = 0.137) reflected moderate interpopulation gene flow, with nonstructured populations having an estimated higher level than insecticide‐treated ones. Population assignment and Mantel testing showed a non‐homogenous pattern, with some populations isolated genetically. Linkage disequilibrium was detected in four of the microsatellites and both resistance markers. Contrasting FST patterns with resistance status supported the view that some populations were indeed structured.
  4. Neighbour‐joining trees revealed some populations to have similar insecticide resistance profiles, independent of geographical origin.
  5. Overall, the findings reveal that the natural M. persicae populations investigated in the present study, living within an intensively cultivated agro‐ecosystem, bear the signature of such management in terms of population structuring, as well as possibly also dynamics.
  相似文献   
9.
Regulated exocytosis, the process by which the membrane of specific cytoplasmic organelles fuse with the plasma membrane in response to adequate stimulation, is most often considered to serve only for the discharge of secretory products, in the brain especially neurotransmitters and peptides. Growing evidence demonstrates however that non-secretory exocytoses, aimed at the insertion at the cell surface of the organelle membrane, are of great physiological importance and may also have critical roles in specific diseases. Recently, two groups of non-secretory exocytoses have been identified: those aimed at the transfer to the cell surface of specific proteins, that we have proposed to be called the protein-exposing exocytoses; and those aimed at the enlargement of the surface itself, the expansive exocytoses. Here we present the existing knowledge about three types of non-secretory exocytoses that occur in the brain: the protein-exposing exocytoses that transfer ionic receptors to the postsynaptic membrane, the best known example being that of the glutamatergic AMPA receptor, a main actor of synaptic plasticity; the expansive exocytosis necessary for the growth of nerve fibres; and the rapid exocytosis of enlargeosomes, that can induce considerable expansion of the cell surface area in a variety of cells types, including the astrocytes.  相似文献   
10.
Antinociceptive activity of a novel buprenorphine analogue   总被引:2,自引:0,他引:2  
HS-599 is a didehydroderivative of buprenorphine that displays high affinity and good selectivity for mu-opioid receptors. We studied its antinociceptive properties after s.c. injection in mice with the tail-flick and hot-plate tests. In the tail-flick test HS-599 (AD50 = 0.2801 micromol/kg s.c.) behaved as a full agonist and was twice as potent as buprenorphine (AD50=0.4569 micromol/kg s.c.) and 50 times more potent than morphine (AD50 = 13.3012 micromol/kg s.c.). Whereas the mu-opioid receptor antagonists naloxone (1-10 mg/kg s.c.) and naltrexone (5-15 mg/kg s.c.) antagonized HS-599 induced analgesia, the delta-opioid receptor antagonist naltrindole (20 mg/kg s.c.) and the kappa-opioid receptor antagonist nor-binaltorphimine (20 mg/kg s.c.) did not. With the hot-plate test at 50 degrees C, HS-599 (AD50 = 0.0359 micromol/kg s.c.) was a full agonist about 130 times more potent than morphine (AD50 = 4.8553 micromol/kg s.c.). With a high intensity nociceptive stimulus (55 degrees C) HS-599 (AD50 = 1.0382 micromol/kg s.c.) remained 7 times more potent than morphine (AD50 = 7.0210 micromol/kg s.c.) but never exceeded the 55% of the maximum possible effect, behaving as a partial agonist able to antagonize morphine antinociception in a dose-dependent manner. HS-599 promises to be a potent and safe new analgesic, preferentially acting at spinal level.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号