首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35篇
  免费   4篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2016年   1篇
  2015年   6篇
  2014年   3篇
  2013年   1篇
  2012年   3篇
  2011年   3篇
  2010年   1篇
  2009年   2篇
  2008年   2篇
  2007年   4篇
  2006年   3篇
  2005年   1篇
  2003年   1篇
  2002年   1篇
  1998年   1篇
排序方式: 共有39条查询结果,搜索用时 15 毫秒
1.
Species may survive under contemporary climate change by either shifting their range or adapting locally to the warmer conditions. Theoretical and empirical studies recently underlined that dispersal, the central mechanism behind these responses, may depend on the match between an individuals’ phenotype and local environment. Such matching habitat choice is expected to induce an adaptive gene flow, but it now remains to be studied whether this local process could promote species’ responses to climate change. Here, we investigate this by developing an individual‐based model including either random dispersal or temperature‐dependent matching habitat choice. We monitored population composition and distribution through space and time under climate change. Relative to random dispersal, matching habitat choice induced an adaptive gene flow that lessened spatial range loss during climate warming by improving populations’ viability within the range (i.e. limiting range fragmentation) and by facilitating colonization of new habitats at the cold margin. The model even predicted range contraction under random dispersal but range expansion under optimal matching habitat choice. These benefits of matching habitat choice for population persistence mostly resulted from adaptive immigration decision and were greater for populations with larger dispersal distance and higher emigration probability. We also found that environmental stochasticity resulted in suboptimal matching habitat choice, decreasing the benefits of this dispersal mode under climate change. However population persistence was still better under suboptimal matching habitat choice than under random dispersal. Our results highlight the urgent need to implement more realistic mechanisms of dispersal such as matching habitat choice into models predicting the impacts of ongoing climate change on biodiversity.  相似文献   
2.
This work demonstrated the constitutive expressionof peroxisome proliferator-activated receptor (PPAR)- and PPAR-in rat synovial fibroblasts at both mRNA and protein levels. A decrease in PPAR- expression induced by 10 µg/ml lipopolysaccharide (LPS) was observed, whereas PPAR- mRNA expression was not modified. 15-Deoxy-12,14-prostaglandin J2(15d-PGJ2) dose-dependently decreased LPS-induced cyclooxygenase (COX)-2 (80%) and inducible nitric oxide synthase (iNOS) mRNA expression (80%), whereas troglitazone (10 µM) only inhibited iNOS mRNA expression (50%). 15d-PGJ2 decreasedLPS-induced interleukin (IL)-1 (25%) and tumor necrosis factor(TNF)- (40%) expression. Interestingly, troglitazone stronglydecreased TNF- expression (50%) but had no significant effect onIL-1 expression. 15d-PGJ2 was able to inhibitDNA-binding activity of both nuclear factor (NF)-B and AP-1.Troglitazone had no effect on NF-B activation and was shown toincrease LPS-induced AP-1 activation. 15d-PGJ2 andtroglitazone modulated the expression of LPS-induced iNOS, COX-2, andproinflammatory cytokines differently. Indeed, troglitazone seems tospecifically target TNF- and iNOS pathways. These results offer newinsights in regard to the anti-inflammatory potential of the PPAR-ligands and underline different mechanisms of action of15d-PGJ2 and troglitazone in synovial fibroblasts.

  相似文献   
3.
4.
The hypersensitive response has been mostly studied by molecular and biochemical methods after sample destruction. The development of imaging techniques allows the monitoring of physiological changes before any signs of cell death. Here, we follow the early steps of a hypersensitive-like response induced by the bacterial elicitor harpin in Nicotiana sp. We describe cytological modifications after inoculation of the harpin protein, using confocal fluorescence microscopy (CFM) and optical coherence tomography (OCT), an interferometric-based microscopy. The changes detected by CFM occurred 5 h after harpin infiltration and corresponded to a redistribution of the chloroplasts from the upper to the inner regions of the palisade mesophyll cells which could be related to a perturbation in the microtubule network. Using OCT, we were able to detect a decrease in chloroplast backscattered signal as early as 30 min after harpin infiltration. A simple physical model, which accounted for the structure and distribution of thylakoid membranes, suggested that this loss of scattering could be associated with a modification in the refractive index of the thylakoid membranes. Our OCT observations were correlated with a decrease in photosynthesis, emphasizing changes in chloroplast structure as one of the earliest hallmarks of plant hypersensitive cell death.  相似文献   
5.
6.
7.
Cdc25C is a dual specificity phosphatase essential for dephosphorylation and activation of cyclin-dependent kinase 1 (cdk1), a prerequisite step for mitosis in all eucaryotes. Cdc25C activation requires phosphorylation on at least six sites including serine 214 (S214) which is essential for metaphase/anaphase transit. Here, we have investigated S214 phosphorylation during human meiosis with the objectives of determining if this mitotic phosphatase cdc25C participates in final meiotic divisions in human oocytes. One hundred forty-eight human oocytes from controlled ovarian stimulation protocols were stained for immunofluorescence: 33 germinal vesicle (GV), 37 metaphase stage I (MI), and 78 unfertilized metaphase stage II (MII). Results were stage dependent, identical, independent of infertility type, or stimulation protocol. During GV stages, phospho-cdc25C is localized at the oocyte periphery. During early meiosis I (MI), phosphorylated cdc25C is no longer detected until onset of meiosis I. Here, phospho-cdc25C localizes on interstitial microtubules and at the cell periphery corresponding to the point of polar body expulsion. As the first polar body reaches the periphery, phosphorylated cdc25C is localized at the junction corresponding to the mid body position. On polar body expulsion, the interior signal for phospho-cdc25C is lost, but remains clearly visible in the extruded polar body. In atresic or damaged oocytes, the polar body no longer stains for phospho-cdc25C. Human cdc25C is both present and phosphorylated during meiosis I and localizes in a fashion similar to that seen during human mitotic divisions implying that the involvement of cdc25C is conserved and functional in meiotic cells.  相似文献   
8.
Measuring molecular evolution in bacteria typically requires estimation of the rate at which nucleotide changes accumulate in strains sampled at different times that share a common ancestor. This approach has been useful for dating ecological and evolutionary events that coincide with the emergence of important lineages, such as outbreak strains and obligate human pathogens. However, in multi-host (niche) transmission scenarios, where the pathogen is essentially an opportunistic environmental organism, sampling is often sporadic and rarely reflects the overall population, particularly when concentrated on clinical isolates. This means that approaches that assume recent common ancestry are not applicable. Here we present a new approach to estimate the molecular clock rate in Campylobacter that draws on the popular probability conundrum known as the ‘birthday problem’. Using large genomic datasets and comparative genomic approaches, we use isolate pairs that share recent common ancestry to estimate the rate of nucleotide change for the population. Identifying synonymous and non-synonymous nucleotide changes, both within and outside of recombined regions of the genome, we quantify clock-like diversification to estimate synonymous rates of nucleotide change for the common pathogenic bacteria Campylobacter coli (2.4 x 10−6 s/s/y) and Campylobacter jejuni (3.4 x 10−6 s/s/y). Finally, using estimated total rates of nucleotide change, we infer the number of effective lineages within the sample time frame–analogous to a shared birthday–and assess the rate of turnover of lineages in our sample set over short evolutionary timescales. This provides a generalizable approach to calibrating rates in populations of environmental bacteria and shows that multiple lineages are maintained, implying that large-scale clonal sweeps may take hundreds of years or more in these species.  相似文献   
9.
10.
Acetylcholine (ACh) contributes to learning processes by modulating cortical plasticity in terms of intensity of neuronal activity and selectivity properties of cortical neurons. However, it is not known if ACh induces long term effects within the primary visual cortex (V1) that could sustain visual learning mechanisms. In the present study we analyzed visual evoked potentials (VEPs) in V1 of rats during a 4–8 h period after coupling visual stimulation to an intracortical injection of ACh analog carbachol or stimulation of basal forebrain. To clarify the action of ACh on VEP activity in V1, we individually pre-injected muscarinic (scopolamine), nicotinic (mecamylamine), α7 (methyllycaconitine), and NMDA (CPP) receptor antagonists before carbachol infusion. Stimulation of the cholinergic system paired with visual stimulation significantly increased VEP amplitude (56%) during a 6 h period. Pre-treatment with scopolamine, mecamylamine and CPP completely abolished this long-term enhancement, while α7 inhibition induced an instant increase of VEP amplitude. This suggests a role of ACh in facilitating visual stimuli responsiveness through mechanisms comparable to LTP which involve nicotinic and muscarinic receptors with an interaction of NMDA transmission in the visual cortex.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号