首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   103篇
  免费   20篇
  2022年   1篇
  2021年   3篇
  2016年   2篇
  2015年   2篇
  2014年   3篇
  2013年   8篇
  2012年   9篇
  2011年   9篇
  2010年   4篇
  2009年   6篇
  2008年   12篇
  2007年   12篇
  2006年   10篇
  2005年   6篇
  2004年   1篇
  2003年   4篇
  2002年   3篇
  2001年   2篇
  2000年   3篇
  1999年   2篇
  1998年   4篇
  1997年   2篇
  1996年   2篇
  1995年   2篇
  1993年   4篇
  1992年   2篇
  1991年   2篇
  1988年   2篇
  1984年   1篇
排序方式: 共有123条查询结果,搜索用时 15 毫秒
1.
The kinetics of flavin semiquinone reduction of the components of the 1:1 complex formed by cytochrome c with either cytochrome b5 or a derivative of cytochrome b5 in which the heme propionates are esterified (DME-cytochrome b5) have been studied. The rate constant for the reduction of horse heart cytochrome c by the electrostatically neutral lumiflavin semiquinone (LfH) is unaffected by complexation with native cytochrome b5 at pH 7. However, complex formation with DME-cytochrome b5 (pH 7) decreases by 35% the rate constant for cytochrome c reduction by LfH. At pH 8, complex formation with native cytochrome b5 decreases the rate constant for cytochrome c reduction by LfH markedly, whereas the rate constant for cytochrome c reduction, either unbound or in the complex formed with DME-cytochrome b5, is increased 2-fold relative to pH 7. These results indicate that the accessibility of the cytochrome c heme is not the same in the complexes formed with the two cytochrome b5 derivatives and that the docking geometry of the complex formed by the two native cytochromes is pH dependent. Binding of horse heart and tuna cytochromes c to native and DME-cytochromes b5 decreases the rate constants for reduction of cytochrome c by the negatively charged flavin mononucleotide semiquinone (FMNH) by approximately 30% and approximately 40%, respectively. This finding is attributed to substantial neutralization of the positive electrostatic potential surface of cytochrome c that occurs when it binds to either form of cytochrome b5.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
2.
A key enzyme in the degradation pathways of dibenzo-p-dioxin and dibenzofuran, namely, 2,2',3-trihydroxybiphenyl dioxygenase, which is responsible for meta cleavage of the first aromatic ring, has been genetically and biochemically analyzed. The dbfB gene of this enzyme has been cloned from a cosmid library of the dibenzo-p-dioxin- and dibenzofuran-degrading bacterium Sphingomonas sp. strain RW1 (R. M. Wittich, H. Wilkes, V. Sinnwell, W. Francke, and P. Fortnagel, Appl. Environ. Microbiol. 58:1005-1010, 1992) and sequenced. The amino acid sequence of this enzyme is typical of those of extradiol dioxygenases. This enzyme, which is extremely oxygen labile, was purified anaerobically to apparent homogeneity from an Escherichia coli strain that had been engineered to hyperexpress dbfB. Unlike most extradiol dioxygenases, which have an oligomeric quaternary structure, the 2,2',3-trihydroxybiphenyl dioxygenase is a monomeric protein. Kinetic measurements with the purified enzyme produced similar Km values for 2,2',3-trihydroxybiphenyl and 2,3-dihydroxybiphenyl, and both of these compounds exhibited strong substrate inhibition. 2,2',3-Trihydroxydiphenyl ether, catechol, 3-methylcatechol, and 4-methylcatechol were oxidized less efficiently and 3,4-dihydroxybiphenyl was oxidized considerably less efficiently.  相似文献   
3.
We have evaluated codon usage bias in Drosophila histone genes and have obtained the nucleotide sequence of a 5,161-bp D. hydei histone gene repeat unit. This repeat contains genes for all five histone proteins (H1, H2a, H2b, H3, and H4) and differs from the previously reported one by a second EcoRI site. These D. hydei repeats have been aligned to each other and to the 5.0-kb (i.e., long) and 4.8-kb (i.e., short) histone repeat types from D. melanogaster. In each species, base composition at synonymous sites is similar to the average genomic composition and approaches that in the small intergenic spacers of the histone gene repeats. Accumulation of synonymous changes at synonymous sites after the species diverged is quite high. Both of these features are consistent with the relatively low codon usage bias observed in these genes when compared with other Drosophila genes. Thus, the generalization that abundantly expressed genes in Drosophila have high codon bias and low rates of silent substitution does not hold for the histone genes.   相似文献   
4.
The microbial degradation of polychlorinated biphenyls (PCBs) by the biphenyl catabolic (Bph) pathway is limited in part by the pathway's fourth enzyme, BphD. BphD catalyzes an unusual carbon-carbon bond hydrolysis of 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acid (HOPDA), in which the substrate is subject to histidine-mediated enol-keto tautomerization prior to hydrolysis. Chlorinated HOPDAs such as 3-Cl HOPDA inhibit BphD. Here we report that BphD preferentially hydrolyzed a series of 3-substituted HOPDAs in the order H>F>Cl>Me, suggesting that catalysis is affected by steric, not electronic, determinants. Transient state kinetic studies performed using wild-type BphD and the hydrolysis-defective S112A variant indicated that large 3-substituents inhibited His-265-catalyzed tautomerization by 5 orders of magnitude. Structural analyses of S112A.3-Cl HOPDA and S112A.3,10-diF HOPDA complexes revealed a non-productive binding mode in which the plane defined by the carbon atoms of the dienoate moiety of HOPDA is nearly orthogonal to that of the proposed keto tautomer observed in the S112A.HOPDA complex. Moreover, in the 3-Cl HOPDA complex, the 2-hydroxo group is moved by 3.6 A from its position near the catalytic His-265 to hydrogen bond with Arg-190 and access of His-265 is blocked by the 3-Cl substituent. Nonproductive binding may be stabilized by interactions involving the 3-substituent with non-polar side chains. Solvent molecules have poor access to C6 in the S112A.3-Cl HOPDA structure, more consistent with hydrolysis occurring via an acyl-enzyme than a gem-diol intermediate. These results provide insight into engineering BphD for PCB degradation.  相似文献   
5.
Recent studies demonstrated that 2,3-dihydroxybiphenyl 1,2-dioxygenase from Burkholderia sp. strain LB400 (DHBDLB400; EC 1.13.11.39) cleaves chlorinated 2,3-dihydroxybiphenyls (DHBs) less specifically than unchlorinated DHB and is competitively inhibited by 2',6'-dichloro-2,3-dihydroxybiphenyl (2',6'-diCl DHB). To determine whether these are general characteristics of DHBDs, we characterized DHBDP6-I and DHBDP6-III, two evolutionarily divergent isozymes from Rhodococcus globerulus strain P6, another good polychlorinated biphenyl (PCB) degrader. In contrast to DHBDLB400, both rhodococcal enzymes had higher specificities for some chlorinated DHBs in air-saturated buffer. Thus, DHBDP6-I cleaved the DHBs in the following order of specificity: 6-Cl DHB > 3'-Cl DHB approximately DHB approximately 4'-Cl DHB > 2'-Cl DHB > 4-Cl DHB > 5-Cl DHB. It also cleaved its preferred substrate, 6-Cl DHB, three times more specifically than DHB. Interestingly, some of the worst substrates for DHBDP6-I were among the best for DHBDP6-III (4-Cl DHB > 5-Cl DHB approximately 6-Cl DHB approximately 3'-Cl DHB > DHB > 2'-Cl DHB approximately 4'-Cl DHB; DHBDP6-III cleaved 4-Cl DHB two times more specifically than DHB). Generally, each of the monochlorinated DHBs inactivated the enzymes more rapidly than DHB. The exceptions were 4-Cl DHB for DHBDP6-I and 2'-Cl DHB for DHBDP6-III. As observed in DHBDLB400, chloro substituents influenced the reactivity of the dioxygenases with O2. For example, the apparent specificities of DHBDP6-I and DHBDP6-III for O2 in the presence of 2'-Cl DHB were lower than those in the presence of DHB by factors of >60 and 4, respectively. DHBDP6-I and DHBDP6-III shared the relative inability of DHBDLB400 to cleave 2',6'-diCl DHB (apparent catalytic constants of 0.088 +/- 0.004 and 0.069 +/- 0.002 s(-1), respectively). However, these isozymes had remarkably different apparent K(m) values for this compound (0.007 +/- 0.001, 0.14 +/- 0.01, and 3.9 +/- 0.4 micro M for DHBDLB400, DHBDP6-I, and DHBDP6-III, respectively). The markedly different reactivities of DHBDP6-I and DHBDP6-III with chlorinated DHBs undoubtedly contribute to the PCB-degrading activity of R. globerulus P6.  相似文献   
6.
Toluate dioxygenase (TADO) of Pseudomonas putida mt-2 catalyzes the dihydroxylation of a broad range of substituted benzoates. The two components of this enzyme were hyperexpressed and anaerobically purified. Reconstituted TADO had a specific activity of 3.8 U/mg with m-toluate, and each component had a full complement of their respective Fe(2)S(2) centers. Steady-state kinetics data obtained by using an oxygraph assay and by varying the toluate and dioxygen concentrations were analyzed by a compulsory order ternary complex mechanism. TADO had greatest specificity for m-toluate, displaying apparent parameters of KmA = 9 +/- 1 microM, k(cat) = 3.9 +/- 0.2 s(-1), and K(m)O(2) = 16 +/- 2 microM (100 mM sodium phosphate, pH 7.0; 25 degrees C), where K(m)O(2) represents the K(m) for O(2) and KmA represents the K(m) for the aromatic substrate. The enzyme utilized benzoates in the following order of specificity: m-toluate > benzoate approximately 3-chlorobenzoate > p-toluate approximately 4-chlorobenzoate > o-toluate approximately 2-chlorobenzoate. The transformation of each of the first five compounds was well coupled to O(2) utilization and yielded the corresponding 1,2-cis-dihydrodiol. In contrast, the transformation of ortho-substituted benzoates was poorly coupled to O(2) utilization, with >10 times more O(2) being consumed than benzoate. However, the apparent K(m) of TADO for these benzoates was >100 microM, indicating that they do not effectively inhibit the turnover of good substrates.  相似文献   
7.
cis-Biphenyl-2,3-dihydrodiol-2,3-dehydrogenase (BphB) is involved in the aerobic biodegradation of polychlorinated biphenyls (PCBs). The crystal structure of the NAD+-enzyme complex was determined by molecular replacement and refined to an R-value of 17.9% at 2.0 A. As a member of the short-chain alcohol dehydrogenase/reductase (SDR) family, the overall protein fold and positioning of the catalytic triad in BphB are very similar to those observed in other SDR enzymes, although small differences occur in the cofactor binding site. Modeling studies indicate that the substrate is bound in a deep hydrophobic cleft close to the nicotinamide moiety of the NAD+ cofactor. These studies further suggest that Asn143 is a key determinant of substrate specificity. A two-step reaction mechanism is proposed for cis-dihydrodiol dehydrogenases.  相似文献   
8.
The reactivities of four evolutionarily divergent extradiol dioxygenases towards mono-, di-, and trichlorinated (triCl) 2,3-dihydroxybiphenyls (DHBs) were investigated: 2,3-dihydroxybiphenyl dioxygenase (EC 1.13.11.39) from Burkholderia sp. strain LB400 (DHBDLB400), DHBDP6-I and DHBDP6-III from Rhodococcus globerulus P6, and 2,2',3-trihydroxybiphenyl dioxygenase from Sphingomonas sp. strain RW1 (THBDRW1). The specificity of each isozyme for particular DHBs differed by up to 3 orders of magnitude. Interestingly, the Kmapp values of each isozyme for the tested polychlorinated DHBs were invariably lower than those of monochlorinated DHBs. Moreover, each enzyme cleaved at least one of the tested chlorinated (Cl) DHBs better than it cleaved DHB (e.g., apparent specificity constants for 3',5'-dichlorinated [diCl] DHB were 2 to 13.4 times higher than for DHB). These results are consistent with structural data and modeling studies which indicate that the substrate-binding pocket of the DHBDs is hydrophobic and can accommodate the Cl DHBs, particularly in the distal portion of the pocket. Although the activity of DHBDP6-III was generally lower than that of the other three enzymes, six of eight tested Cl DHBs were better substrates for DHBDP6-III than was DHB. Indeed, DHBDP6-III had the highest apparent specificity for 4,3',5'-triCl DHB and cleaved this compound better than two of the other enzymes. Of the four enzymes, THBDRW1 had the highest specificity for 2'-Cl DHB and was at least five times more resistant to inactivation by 2'-Cl DHB, consistent with the similarity between the latter and 2,2',3-trihydroxybiphenyl. Nonetheless, THBDRW1 had the lowest specificity for 2',6'-diCl DHB and, like the other enzymes, was unable to cleave this critical PCB metabolite (kcatapp < 0.001 s(-1)).  相似文献   
9.
10.
BphK is a glutathione S-transferase of unclear physiological function that occurs in some bacterial biphenyl catabolic (bph) pathways. We demonstrated that BphK of Burkholderia xenovorans strain LB400 catalyzes the dehalogenation of 3-chloro 2-hydroxy-6-oxo-6-phenyl-2,4-dienoates (HOPDAs), compounds that are produced by the cometabolism of polychlorinated biphenyls (PCBs) by the bph pathway and that inhibit the pathway's hydrolase. A one-column protocol was developed to purify heterologously produced BphK. The purified enzyme had the greatest specificity for 3-Cl HOPDA (kcat/Km, approximately 10(4) M(-1) s(-1)), which it dechlorinated approximately 3 orders of magnitude more efficiently than 4-chlorobenzoate, a previously proposed substrate of BphK. The enzyme also catalyzed the dechlorination of 5-Cl HOPDA and 3,9,11-triCl HOPDA. By contrast, BphK did not detectably transform HOPDA, 4-Cl HOPDA, or chlorinated 2,3-dihydroxybiphenyls. The BphK-catalyzed dehalogenation proceeded via a ternary-complex mechanism and consumed 2 equivalents of glutathione (GSH) (Km for GSH in the presence of 3-Cl HOPDA, approximately 0.1 mM). A reaction mechanism consistent with the enzyme's specificity is proposed. The ability of BphK to dehalogenate inhibitory PCB metabolites supports the hypothesis that this enzyme was recruited to facilitate PCB degradation by the bph pathway.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号