全文获取类型
收费全文 | 542篇 |
免费 | 30篇 |
专业分类
572篇 |
出版年
2022年 | 3篇 |
2021年 | 19篇 |
2020年 | 6篇 |
2019年 | 14篇 |
2018年 | 9篇 |
2017年 | 9篇 |
2016年 | 9篇 |
2015年 | 20篇 |
2014年 | 18篇 |
2013年 | 23篇 |
2012年 | 40篇 |
2011年 | 36篇 |
2010年 | 20篇 |
2009年 | 27篇 |
2008年 | 30篇 |
2007年 | 31篇 |
2006年 | 27篇 |
2005年 | 16篇 |
2004年 | 24篇 |
2003年 | 21篇 |
2002年 | 15篇 |
2001年 | 14篇 |
2000年 | 22篇 |
1999年 | 8篇 |
1998年 | 9篇 |
1997年 | 9篇 |
1996年 | 8篇 |
1995年 | 4篇 |
1994年 | 3篇 |
1993年 | 4篇 |
1992年 | 5篇 |
1991年 | 3篇 |
1990年 | 4篇 |
1989年 | 4篇 |
1988年 | 4篇 |
1987年 | 3篇 |
1983年 | 4篇 |
1982年 | 3篇 |
1979年 | 3篇 |
1977年 | 3篇 |
1976年 | 2篇 |
1975年 | 3篇 |
1973年 | 6篇 |
1972年 | 3篇 |
1971年 | 4篇 |
1965年 | 2篇 |
1963年 | 2篇 |
1960年 | 2篇 |
1937年 | 3篇 |
1920年 | 1篇 |
排序方式: 共有572条查询结果,搜索用时 0 毫秒
1.
Bryony A. P. Williams Catherine Elliot Lena Burri Yasutoshi Kido Kiyoshi Kita Anthony L. Moore Patrick J. Keeling 《PLoS pathogens》2010,6(2)
Microsporidia are a group of obligate intracellular parasitic eukaryotes that were considered to be amitochondriate until the recent discovery of highly reduced mitochondrial organelles called mitosomes. Analysis of the complete genome of Encephalitozoon cuniculi revealed a highly reduced set of proteins in the organelle, mostly related to the assembly of iron-sulphur clusters. Oxidative phosphorylation and the Krebs cycle proteins were absent, in keeping with the notion that the microsporidia and their mitosomes are anaerobic, as is the case for other mitosome bearing eukaryotes, such as Giardia. Here we provide evidence opening the possibility that mitosomes in a number of microsporidian lineages are not completely anaerobic. Specifically, we have identified and characterized a gene encoding the alternative oxidase (AOX), a typically mitochondrial terminal oxidase in eukaryotes, in the genomes of several distantly related microsporidian species, even though this gene is absent from the complete genome of E. cuniculi. In order to confirm that these genes encode functional proteins, AOX genes from both A. locustae and T. hominis were over-expressed in E. coli and AOX activity measured spectrophotometrically using ubiquinol-1 (UQ-1) as substrate. Both A. locustae and T. hominis AOX proteins reduced UQ-1 in a cyanide and antimycin-resistant manner that was sensitive to ascofuranone, a potent inhibitor of the trypanosomal AOX. The physiological role of AOX microsporidia may be to reoxidise reducing equivalents produced by glycolysis, in a manner comparable to that observed in trypanosomes. 相似文献
2.
Keeling PJ 《American journal of botany》2004,91(10):1481-1493
By synthesizing data from individual gene phylogenies, large concatenated gene trees, and other kinds of molecular, morphological, and biochemical markers, we begin to see the broad outlines of a global phylogenetic tree of eukaryotes. This tree is apparently composed of five large assemblages, or "supergroups." Plants and algae, or more generally eukaryotes with plastids (the photosynthetic organelle of plants and algae and their nonphotosynthetic derivatives) are scattered among four of the five supergroups. This is because plastids have had a complex evolutionary history involving several endosymbiotic events that have led to their transmission from one group to another. Here, the history of the plastid and of its various hosts is reviewed with particular attention to the number and nature of the endosymbiotic events that led to the current distribution of plastids. There is accumulating evidence to support a single primary origin of plastids from a cyanobacterium (with one intriguing possible exception in the little-studied amoeba Paulinella), followed by the diversification of glaucophytes, red and green algae, with plants evolving from green algae. Following this, some of these algae were themselves involved in secondary endosymbiotic events. The best current evidence indicates that two independent secondary endosymbioses involving green algae gave rise to euglenids and chlorarachniophytes, whereas a single endosymbiosis with a red algae gave rise to the chromalveolates, a diverse group including cryptomonads, haptophytes, heterokonts, and alveolates. Dinoflagellates (alveolates) have since taken up other algae in serial secondary and tertiary endosymbioses, raising a number of controversies over the origin of their plastids, and by extension, the recently discovered cryptic plastid of the closely related apicomplexan parasites. 相似文献
3.
Association of a 76 kDa polypeptide with soluble starch synthase I activity in maize (cv B73) endosperm 总被引:1,自引:1,他引:1
Chen Mu Chee Harn Yuan-Tih Ko George W. Singletary Peter L. Keeling Bruce P. Wasserman 《The Plant journal : for cell and molecular biology》1994,6(2):151-159
Soluble starch synthase (SSS) I was purified 361-fold from hand-dissected endosperm tissue of inbred maize (Zea mays, cv. B73) to specific activities ranging between 5 and 9 µmol min−1 mg−1. A key to this purification protocol was the introduction of a size-exclusion chromatography step, a size-based fractionation which provided abundant levels of desalted SSS forms I and II. The native molecular masses calculated for SSS forms I and II were 75.5 kDa and 180 kDa, respectively. SSSI was then further purified by hydrophobic interaction chromatography on Phenyl-Superose and by FPLC on Mono Q. Analysis of column peaks by SDS—PAGE and scanning densitometry revealed that a 76 kDa polypeptide is strongly correlated with SSSI activity. Antibodies were then generated against a 76 kDa polypeptide extracted from starch granules. These antibodies, which were monospecific for the soluble 76 kDa polypeptide, neutralized greater than 90% of SSSI activity, and precipitated the 76 kDa protein. These results establish the 76 kDa protein as an SSSI in the B73 line of inbred maize. An immunologically similar 76 kDa protein also appears to be tightly associated with the starch granule. 相似文献
4.
Chaofeng Lin Eloise I. Larsen Genevieve R. Larsen Malcolm E. Cox James J. Smith 《Hydrobiologia》2012,696(1):63-76
Bacterially mediated iron redox cycling exerts a strong influence on groundwater geochemistry, but few studies have investigated iron biogeochemical processes in coastal alluvial aquifers from a microbiological viewpoint. The shallow alluvial aquifer located adjacent to Poona estuary on the subtropical Southeast Queensland coast represents a redox-stratified system where iron biogeochemical cycling potentially affects water quality. Using a 300 m transect of monitoring wells perpendicular to the estuary, we examined groundwater physico-chemical conditions and the occurrence of cultivable bacterial populations involved in iron (and manganese, sulfur) redox reactions in this aquifer. Results showed slightly acidic and near-neutral pH, suboxic conditions and an abundance of dissolved iron consisting primarily of iron(II) in the majority of wells. The highest level of dissolved iron(III) was found in a well proximal to the estuary most likely a result of iron curtain effects due to tidal intrusion. A number of cultivable, (an)aerobic bacterial populations capable of diverse carbon, iron, or sulfur metabolism coexisted in groundwater redox transition zones. Our findings indicated aerobic, heterotrophic respiration and bacterially mediated iron/sulfur redox reactions were integral to carbon cycling in the aquifer. High abundances of dissolved iron and cultivable iron and sulfur bacterial populations in estuary-adjacent aquifers have implications for iron transport to marine waters. This study demonstrated bacterially mediated iron redox cycling and associated biogeochemical processes in subtropical coastal groundwaters using culture-based methods. 相似文献
5.
Javier del Campo Maria J. Pons Maria Herranz Kevin C. Wakeman Juana del Valle Mark J. A. Vermeij Brian S. Leander Patrick J. Keeling 《Environmental microbiology》2019,21(10):3855-3861
The application of metabarcoding to study animal-associated microeukaryotes has been restricted because the universal barcode used to study microeukaryotic ecology and distribution in the environment, the Small Subunit of the Ribosomal RNA gene (18S rRNA), is also present in the host. As a result, when host-associated microbial eukaryotes are analysed by metabarcoding, the reads tend to be dominated by host sequences. We have done an in silico validation against the SILVA 18S rRNA database of a non-metazoan primer set (primers that are biased against the metazoan 18S rRNA) that recovers only 2.6% of all the metazoan sequences, while recovering most of the other eukaryotes (80.4%). Among metazoans, the non-metazoan primers are predicted to amplify 74% of Porifera sequences, 4% of Ctenophora, and 15% of Cnidaria, while amplifying almost no sequences within Bilateria. In vivo, these non-metazoan primers reduce significantly the animal signal from coral and human samples, and when compared against universal primers provide at worst a 2-fold decrease in the number of metazoan reads and at best a 2800-fold decrease. This easy, inexpensive, and near-universal method for the study of animal-associated microeukaryotes diversity will contribute to a better understanding of the microbiome. 相似文献
6.
Evidence from beta-tubulin phylogeny that microsporidia evolved from within the fungi 总被引:18,自引:0,他引:18
Microsporidia are obligate intracellular parasites that were thought to be an ancient eukaryotic lineage based on molecular phylogenies using ribosomal RNA and translation elongation factors. However, this ancient origin of microsporidia has been contested recently, as several other molecular phylogenies suggest that microsporidia are closely related to fungi. Most of the protein trees that place microsporidia with fungi are not well sampled, however, and it is impossible to resolve whether microsporidia evolved from a fungus or from a protistan relative of fungi. We have sequenced beta-tubulins from 3 microsporidia, 4 chytrid fungi, and 12 zygomycete fungi, expanding the representation of beta-tubulin to include all four fungal divisions and a wide diversity of microsporidia. In phylogenetic trees including these new sequences, the overall topology of the fungal beta-tubulins generally matched the expected relationships among the four fungal divisions, although the zygomycetes were polyphyletic in some analyses. The microsporidia consistently fell within this fungal diversification, and not as a sister group to fungi. Overall, beta-tubulin phylogeny suggests that microsporidia evolved from a fungus sometime after the divergence of chytrids. We also found that chytrid alpha- and beta-tubulins are much less divergent than are tubulins from other fungi or microsporidia. In trees in which the only fungal representatives were the chytrids, microsporidia still branched with fungi (i.e., with chytrids), suggesting that the affiliation between microsporidian and fungal tubulins is not an artifact of long-branch attraction. 相似文献
7.
Diterpene resin acids are a significant component of conifer oleoresin, which is a viscous mixture of terpenoids present constitutively or inducibly upon herbivore or pathogen attack and comprises one form of chemical resistance to such attacks. This review focuses on the recent discoveries in the chemistry, biosynthesis, molecular biology, regulation, and biology of these compounds in conifers. 相似文献
8.
A Naqi J R DeLoach K Andrews W Satterfield M Keeling 《Biotechnology and applied biochemistry》1988,10(4):365-372
The antitumor agent L-asparaginase was entrapped in canine erythrocytes by a single dialysis encapsulation (efficiency mean = 30%). Concentration of asparaginase in carrier cells was about 240 IU/ml, with an average of 62% cell recovery. Use of a double dialysis procedure increased the L-asparaginase concentration within carrier cells to 530 IU/ml, with an overall cell recovery of 53.9%. In vitro efflux experiments showed L-asparaginase-loaded canine carriers were stable at both 4 and 37 degrees C for an 18-h period. In vivo cell survival studies showed that carrier cells did circulate and that L-asparaginase had a half-life of 6.5 days. No evidence suggesting that the enzyme left the cell was found. Carrier cells prepared with [3H]inulin and [14C]sucrose were stored at 4 degrees C for 2 weeks and began to show signs of deterioration after 2 days. 相似文献
9.
10.
Erick R. James Noriko Okamoto Fabien Burki Rudolf H. Scheffrahn Patrick J. Keeling 《PloS one》2013,8(3)
The parabasalian symbionts of lower termite hindgut communities are well-known for their large size and structural complexity. The most complex forms evolved multiple times independently from smaller and simpler flagellates, but we know little of the diversity of these small flagellates or their phylogenetic relationships to more complex lineages. To understand the true diversity of Parabasalia and how their unique cellular complexity arose, more data from smaller and simpler flagellates are needed. Here, we describe two new genera of small-to-intermediate size and complexity, represented by the type species Cthulhu macrofasciculumque and Cthylla microfasciculumque from Prorhinotermes simplex and Reticulitermes virginicus, respectively (both hosts confirmed by DNA barcoding). Both genera have a single anterior nucleus embeded in a robust protruding axostyle, and an anterior bundle flagella (and likely a single posterior flagellum) that emerge slightly subanteriorly and have a distinctive beat pattern. Cthulhu is relatively large and has a distinctive bundle of over 20 flagella whereas Cthylla is smaller, has only 5 anterior flagella and closely resembles several other parababsalian genera. Molecular phylogenies based on small subunit ribosomal RNA (SSU rRNA) show both genera are related to previously unidentified environmental sequences from other termites (possibly from members of the Tricercomitidae), which all branch as sisters to the Hexamastigitae. Altogether, Cthulhu likely represents another independent origin of relatively high cellular complexity within parabasalia, and points to the need for molecular characterization of other key taxa, such as Tricercomitus. 相似文献