首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   104篇
  免费   8篇
  2023年   3篇
  2022年   4篇
  2021年   5篇
  2020年   7篇
  2019年   19篇
  2018年   9篇
  2017年   7篇
  2015年   4篇
  2014年   10篇
  2013年   9篇
  2012年   8篇
  2011年   8篇
  2010年   3篇
  2009年   6篇
  2008年   4篇
  2007年   1篇
  2006年   3篇
  2000年   1篇
  1999年   1篇
排序方式: 共有112条查询结果,搜索用时 15 毫秒
1.
ObjectiveInflammation has been considered as an important factor in cardiovascular diseases (CVD). Curcumin has been well known for its anti-inflammatory effects. In current research, protective effect of curcumin on cardiovascular oxidative stress indicators in systemic inflammation induced by lipopolysaccharide (LPS) was investigated in rats.Material and methodsThe animals were divided into five groups and received the treatments during two weeks [1]: Control in which vehicle was administered instead of curcumin and saline was injected instead of LPS [2], LPS group in which vehicle of curcumin plus LPS (1 mg/kg) was administered [3-5], curcumin groups in them three doses of curcumin (5, 10 and 15 mg/kg) before LPS were administered.ResultsAdministration of LPS was followed by an inflammation status presented by an increased level of white blood cells (WBC) (p < 0.001). An oxidative stress status was also occurred after LPS injection which was presented by an increased level of malondialdehyde (MDA) while, a decrease in thiols, superoxide dismutase (SOD) and catalase(CAT) in all heart, aorta and serum (p < 0.001). The results also showed that curcumin decreased WBC (doses: 10 and 15 mg/kg) (p < 0.001) accompanying with a decrease in MDA (P < 0.01 and P < 0.001). Curcumin also improved the thiols and the activities of SOD and catalase (P < 0.05, P < 0.01 and P < 0.001).ConclusionBased on our findings, curcumin can ameliorates oxidative stress and inflammation induced by LPS in rats to protect the cardiovascular system.  相似文献   
2.
ObjectivesTyphoid fever is caused by Salmonella enterica serovar Typhi. OmpC, OmpF and OmpA, the three major outer membrane proteins (OMPs), could serve as vaccine candidates.MethodsThe porins antigenicity was predicted in silico. The OMP genes were amplified, cloned and expressed. Sero-reactivities of the recombinant proteins purified by denaturing method were assayed by ELISA. BALB/c mice were immunized with the recombinant porins followed by bacterial challenge.ResultsBacterial challenge of the animal model brought about antibody triggering efficacy of the antigen in OmpF > OmpC > OmpA order. Experimental findings validated the in silico results. None of the antigens had synergic or antagonistic effects on each other from immune system induction points of view. Despite their high immunogenicity, none of the antigens was protective. However, administration of two or three antigens simultaneously resulted in retardation of lethal effect. Porins, in addition to their specific functions, share common functions. Hence, they can compensate for each other's functions.ConclusionsThe produced antibodies could not eliminate the pathogenicity by blockade of one or some of the antigens. Porin antigens are not suitable vaccine candidates alone or in denatured forms. Native forms of the antigens maybe studied for protective immunogenicity.  相似文献   
3.
Molecular Biology Reports - Understanding the genetic diversity and relationships between genotypes is an effective step in designing effective breeding programs. Insertional polymorphisms of...  相似文献   
4.
5.
Coronary artery disease (CAD) is a multicellular disease characterized by chronic inflammation. Peripheral blood-mononuclear cells (PBMCs), as a critical component of immune system, actively cross-talk with pathophysiological conditions induced by endothelial cell injury, reflecting in perturbed PBMC expression. STAT1 is believed to be relevant to CAD pathogenesis through regulating key inflammatory processes and modulating STAT1 expression play key roles in fine-tuning CAD-related inflammatory processes. This study evaluated PBMC expressions of STAT1, and its regulators (miR-150 and miR-223) in a cohort including 72 patients with CAD with significant ( ≥ 50%) stenosis, 30 patients with insignificant ( < 50%) coronary stenosis (ICAD), and 74 healthy controls, and assessed potential of PBMC expressions to discriminate between patients and controls. We designed quantitative real-time polymerase chain reaction (RT-qPCR) assays and identified stable reference genes for normalizing PBMC quantities of miR-150, miR-223, and STAT1 applying geNorm algorithm to six small RNAs and five mRNAs. There was no significant difference between CAD and ICAD patients regarding STAT1 expression. However, both groups of patients had higher levels of STAT1 than healthy controls. miR-150 and miR-223 were differently expressed across three groups of subjects and were downregulated in patients compared with healthy controls, with the lowest expression levels being observed in patients with ICAD. ROC curves suggested that PBMC expressions may separate between different groups of study subjects. PBMC expressions also discriminated different clinical manifestations of CAD from ICADs or healthy controls. In conclusion, the present study reported PBMC dysregulations of STAT1, miR-150, and miR-223, in patients with significant or insignificant coronary stenosis and suggested that these changes may have diagnostic implications.  相似文献   
6.
Brain tumors are the most common form of solid tumors in children and is presently a serious therapeutic challenge worldwide. Traditional treatment with chemotherapy and radiotherapy was shown to be unsuccessful in targeting brain tumor cancer stem cells (CSCs), leading to recurrent, treatment-resistant secondary malignancies. Oncolytic virotherapy (OV) is an effective antitumor therapeutic strategy which offers a novel, targeted approach for eradicating pediatric brain tumor CSCs by utilizing mechanisms of cell killing that differ from conventional therapies. A number of studies and some clinical trials have therefore investigated the effects of combined therapy of radiations or chemotherapies with oncolytic viruses which provide new insights regarding the effectiveness and improvement of treatment responses for brain cancer patients. This review summarizes the current knowledge of the therapeutic potency of OVs-induced CSCs targeting in the treatment of brain tumors for a better understanding and hence a better management of this disease.  相似文献   
7.
In this study, the use of trimethylchitosan (TMC), by higher solubility in comparison with chitosan, in alginate/chitosan nanoparticles containing cationic β-cyclodextrin polymers (CPβCDs) has been studied, with the aim of increasing insulin uptake by nanoparticles. Firstly, TMCs were synthesized by iodomethane, and CPβCDs were synthesized within a one-step polycondensation reaction using choline chloride (CC) and epichlorohydrine (EP). Insulin–CβCDPs complex was prepared by mixing 1:1 portion of insulin and CPβCDs solutions. Then, nanoparticles prepared in a three-step procedure based on the iono-tropic pregelation method. Nanoparticles screened using experimental design and Placket Burman methodology to obtain minimum size and polydispercity index (pdI) and the highest entrapment efficiency (EE). CPβCDs and TMC solution concentration and pH and alginate and calcium chloride solution concentrations are found as the significant parameters on size, PdI, and EE. The nanoparticles with proper physicochemical properties were obtained; the size, PdI, and EE% of optimized nanoparticles were reported as 150.82 ± 21 nm, 0.362 ± 0.036, and 93.2% ± 4.1, respectively. The cumulative insulin release in intestinal condition achieved was 50.2% during 6 h. By SEM imaging, separate, spherical, and nonaggregated nanoparticles were found. In the cytotoxicity studies on Caco-2 cell culture, no significant cytotoxicity was observed in 5 h of incubation, but after 24 h of incubation, viability was decreased to 50% in 0.5 mμ of TMC concentration. Permeability studies across Caco-2 cells had been carried out, and permeability achieved in 240 min was 8.41 ± 0.39%, which shows noticeable increase in comparison with chitosan nanoparticles. Thus, according to the results, the optimized nanoparticles can be used as a new insulin oral delivery system.KEY WORDS: alginate, cationic β-cyclodextrin, insulin nanoparticle, oral delivery, trimethyl chitosan  相似文献   
8.
Single enzyme molecule assays were performed using capillary electrophoresis-based protocols on β-galactosidase from Lactobacillus delbrueckii, Lactobacillus reuteri, Lactobacillus helveticus and Bacillus circulans. The enzyme was found to show static heterogeneity with respect to catalytic rate and the variance in rate increased with protein size. This is consistent with the proposal that random errors in translation may be an important underlying component of enzyme heterogeneity. Additionally these enzymes were found to show static heterogeneity with respect to electrophoretic mobility. Comparison of wild-type and rpsL E. coli β-galactosidase expressed in the presence and absence of streptomycin suggested that increases in error do not result in detectable increases in the dynamic heterogeneity of activity with increasing temperature. Finally, a method was developed to measure the dynamic heterogeneity in electrophoretic mobility.  相似文献   
9.
BioMetals - A group of bidentate nitrogen and sulfur donor pyrazole derivative ligands abbreviated as Na[RNCS(Pz)], Na[RNCS(PzMe2)], Na[RNCS(PzMe3)], Na[RNCS(PzPhMe)], Na[RNCS(PzPh2)], where...  相似文献   
10.
Oxidative stress occurs as a result of imbalance between generation and detoxification of reactive oxygen species (ROS). This kind of stress was rarely discussed in connection with foreign protein production in Escherichia coli. Relation between cytoplasmic recombinant protein expression with H2O2 concentration and catalase activity variation was already reported. The periplasmic space of E. coli has different oxidative environment in relative to cytoplasm and there are some benefits in periplasmic expression of recombinant proteins. In this study, hydrogen peroxide concentration and catalase activity following periplasmic expression of mouse IL-4 were measured in E. coli. After construction of pET2mIL4 plasmid, the expression of recombinant mouse interleukin-4 (mIL-4) was confirmed. Then, the H2O2 concentration and catalase activity variation in the cells were studied in exponential and stationary phases at various ODs and were compared to those of wild type cells and empty vector transformed cells. It was revealed that empty vector introduction and periplasmic recombinant protein expression increased significantly the H2O2 concentration of the cells. However, the H2O2 concentration in mIL-4 expressing cells was significantly higher than its concentration in empty vector transformed cells, demonstrating more effects of recombinant mIL-4 expression on H2O2 elevation. Likewise, although catalase activity was reduced in foreign DNA introduced cells, it was more lowered following expression of recombinant proteins. Correlation between H2O2 concentration elevation and catalase activity reduction with cell growth depletion is also demonstrated. It was also found that recombinant protein expression results in cell size increase.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号