全文获取类型
收费全文 | 106篇 |
免费 | 0篇 |
专业分类
106篇 |
出版年
2023年 | 1篇 |
2022年 | 1篇 |
2021年 | 2篇 |
2019年 | 2篇 |
2018年 | 2篇 |
2017年 | 2篇 |
2016年 | 7篇 |
2015年 | 3篇 |
2014年 | 6篇 |
2013年 | 5篇 |
2012年 | 4篇 |
2011年 | 8篇 |
2010年 | 5篇 |
2009年 | 4篇 |
2008年 | 7篇 |
2007年 | 7篇 |
2006年 | 3篇 |
2005年 | 3篇 |
2004年 | 3篇 |
2003年 | 2篇 |
2001年 | 1篇 |
2000年 | 2篇 |
1999年 | 2篇 |
1998年 | 2篇 |
1992年 | 4篇 |
1991年 | 1篇 |
1989年 | 1篇 |
1988年 | 2篇 |
1987年 | 1篇 |
1986年 | 2篇 |
1985年 | 1篇 |
1984年 | 3篇 |
1982年 | 3篇 |
1981年 | 2篇 |
1972年 | 1篇 |
1968年 | 1篇 |
排序方式: 共有106条查询结果,搜索用时 0 毫秒
1.
R Van den Bergh W Oelofsen R J Naudé S E Terblanche 《Comparative biochemistry and physiology. B, Comparative biochemistry》1992,101(4):559-565
1. Exercise and in vivo treatment with adrenocorticotrophic hormone (ACTH) showed a marked tendency to increase in vivo plasma cortisol levels in the guinea pig (Cavia porcellus). 2. However, in vivo norepinephrine (NE) treatment did not have any notable effect on plasma cortisol levels. 3. Metabolite levels (glycogen, glycerol and lactate) in liver and plantaris and soleus muscle, and the levels of glucose, glycerol and lactate in blood, were determined in response to the same treatments. 4. A number of statistically significant changes, as well as certain trends, in metabolite levels were observed in response to the treatments and are discussed. 相似文献
2.
1. Groups of male Long Evans rats were sacrificed at the ages of 10, 16, 20, 24, 28, 32, 38 and 45 weeks. 2. The two epididymal fat pads from each rat in each group (4-5 rats) were excised for the preparation of adipocytes. 3. Cell suspensions were incubated in triplicate with each of seven norepinephrine concentrations ranging from 0.5694 to 569,400 nM. 4. Lipolytic responses are expressed as nmol glycerol released/microgram DNA/90 min. 5. The animals reached a peak response between the ages of 20 and 32 weeks. 6. Aging resulted in a gradual increase in the apparent affinity (Km) of the response yielding system for norepinephrine. 7. Initially an increase in the lipolytic capacity of the cells in response to norepinephrine, is observed, as reflected by the Vmax values up to an age of 20 weeks. 8. Vmax then stays relatively constant at elevated levels up to an age of 32 weeks, followed by an abrupt decrease with further aging. 相似文献
3.
Critical thermal limits depend on methodological context 总被引:3,自引:0,他引:3
Terblanche JS Deere JA Clusella-Trullas S Janion C Chown SL 《Proceedings. Biological sciences / The Royal Society》2007,274(1628):2935-2942
A full-factorial study of the effects of rates of temperature change and start temperatures was undertaken for both upper and lower critical thermal limits (CTLs) using the tsetse fly, Glossina pallidipes. Results show that rates of temperature change and start temperatures have highly significant effects on CTLs, although the duration of the experiment also has a major effect. Contrary to a widely held expectation, slower rates of temperature change (i.e. longer experimental duration) resulted in poorer thermal tolerance at both high and low temperatures. Thus, across treatments, a negative relationship existed between duration and upper CTL while a positive relationship existed between duration and lower CTL. Most importantly, for predicting tsetse distribution, G. pallidipes suffer loss of function at less severe temperatures under the most ecologically relevant experimental conditions for upper (0.06 degrees C min(-1); 35 degrees C start temperature) and lower CTL (0.06 degrees C min(-1); 24 degrees C start temperature). This suggests that the functional thermal range of G. pallidipes in the wild may be much narrower than previously suspected, approximately 20-40 degrees C, and highlights their sensitivity to even moderate temperature variation. These effects are explained by limited plasticity of CTLs in this species over short time scales. The results of the present study have broad implications for understanding temperature tolerance in these and other terrestrial arthropods. 相似文献
4.
Friederike Cuello Manu Shankar-Hari Ursula Mayr Xiaoke Yin Melanie Marshall Gonca Suna Peter Willeit Sarah R. Langley Tamani Jayawardhana Tanja Zeller Marius Terblanche Ajay M. Shah Manuel Mayr 《Molecular & cellular proteomics : MCP》2014,13(10):2545-2557
In an endotoxaemic mouse model of sepsis, a tissue-based proteomics approach for biomarker discovery identified long pentraxin 3 (PTX3) as the lead candidate for inflamed myocardium. When the redox-sensitive oligomerization state of PTX3 was further investigated, PTX3 accumulated as an octamer as a result of disulfide-bond formation in heart, kidney, and lung—common organ dysfunctions seen in patients with sepsis. Oligomeric moieties of PTX3 were also detectable in circulation. The oligomerization state of PTX3 was quantified over the first 11 days in critically ill adult patients with sepsis. On admission day, there was no difference in the oligomerization state of PTX3 between survivors and non-survivors. From day 2 onward, the conversion of octameric to monomeric PTX3 was consistently associated with a greater survival after 28 days of follow-up. For example, by day 2 post-admission, octameric PTX3 was barely detectable in survivors, but it still constituted more than half of the total PTX3 in non-survivors (p < 0.001). Monomeric PTX3 was inversely associated with cardiac damage markers NT-proBNP and high-sensitivity troponin I and T. Relative to the conventional measurements of total PTX3 or NT-proBNP, the oligomerization of PTX3 was a superior predictor of disease outcome.Severe sepsis is a common acute illness in intensive care units (ICUs)1 and is associated with high mortality rates and chronic morbidity. When it is associated with hypotension (termed septic shock), the mortality rate is very high (50% to 80%). Cardiovascular dysfunction during sepsis is multifactorial and often associated with minimal loss of myocardial tissue, but with the release of myocardial-specific markers such as troponins. A key unmet clinical need is the availability of a biomarker that predicts myocardial dysfunction early, monitors response to treatment, and thus identifies a cohort of patients at higher risk of septic shock to aid in targeted interventions and improve outcome (1).In the present study, we used proteomics for biomarker discovery. Over the past decade, the field of proteomics has made impressive progress. Plasma and serum, however, are the most complex proteomes of the human body (2), and less abundant proteins tend to be missed in untargeted proteomics analyses of body fluids (3). Thus, we pursued an alternative strategy: the application of proteomics to diseased tissue (4), in which the potential biomarkers are less dilute and have a less uncertain cellular origin (5–7). We employed a solubility-based protein-subfractionation methodology to analyze inflammatory proteins that are retained with sepsis tissue. This innovative proteomics approach shall reveal inflammatory molecules that reside and persist within inflamed tissue. We hypothesized that proteins that accumulate in the susceptible tissues are more likely to be biomarker candidates for organ dysfunction than proteins that just circulate in plasma or serum. We then validated our proteomics findings in the preclinical model using samples from sepsis patients admitted to ICUs. 相似文献
5.
Charlene Janion Hans Petter Leinaas John S. Terblanche Steven L. Chown 《Evolutionary ecology》2010,24(6):1365-1380
How the impacts of climate change on biological invasions will play out at the mechanistic level is not well understood. Two major hypotheses have been proposed: invasive species have a suite of traits that enhance their performance relative to indigenous ones over a reasonably wide set of circumstances; invasive species have greater phenotypic plasticity than their indigenous counterparts and will be better able to retain performance under altered conditions. Thus, two possibly independent, but complementary mechanistic perspectives can be adopted: based on trait means and on reaction norms. Here, to demonstrate how this approach might be applied to understand interactions between climate change and invasion, we investigate variation in the egg development times and their sensitivity to temperature amongst indigenous and introduced springtail species in a cool temperate ecosystem (Marion Island, 46°54′S 37°54′E) that is undergoing significant climate change. Generalized linear model analyses of the linear part of the development rate curves revealed significantly higher mean trait values in the invasive species compared to indigenous species, but no significant interactions were found when comparing the thermal reaction norms. In addition, the invasive species had a higher hatching success than the indigenous species at high temperatures. This work demonstrates the value of explicitly examining variation in trait means and reaction norms among indigenous and invasive species to understand the mechanistic basis of variable responses to climate change among these groups. 相似文献
6.
Terblanche JS Sinclair BJ Jaco Klok C McFarlane ML Chown SL 《Journal of insect physiology》2005,51(9):1013-1023
Despite much focus on species responses to environmental variation through space and time, many higher taxa and geographic areas remain poorly studied. We report the effects of temperature acclimation on thermal tolerance, desiccation rate and metabolic rate for adult Chirodica chalcoptera (Coleoptera: Chrysomelidae) collected from Protea nerifolia inflorescences in the Fynbos Biome in South Africa. After 7 days of acclimation at 12, 19 and 25 degrees C, critical thermal maxima (mean+/-s.e.: 41.8+/-0.2 degrees C in field-fresh beetles) showed less response (<1 degrees C change) to temperature acclimation than did the onset of the critical thermal minima (0.1+/-0.2, 1.0+/-0.2 and 2.3+/-0.2 degrees C, respectively). Freezing was lethal in C. chalcoptera (field-fresh SCP -14.6 degrees C) and these beetles also showed pre-freeze mortality. Survival of 2 h at -10.1 degrees C increased from 20% to 76% after a 2 h pre-exposure to -2 degrees C, indicating rapid cold hardening. Metabolic rate, measured at 25 degrees C and adjusted by ANCOVA for mass variation, did not differ between males and females (2.772+/-0.471 and 2.517+/-0.560 ml CO2 h(-1), respectively), but was higher in 25 degrees C-acclimated beetles relative to the field-fresh and 12 degrees C-acclimated beetles. Body water content and desiccation rate did not differ between males and females and did not respond significantly to acclimation. We place these data in the context of measured inflorescence and ambient temperatures, and predict that climate change for the region could have effects on this species, in turn possibly affecting local ecosystem functioning. 相似文献
7.
Elsje Kleynhans Des E. Conlong John S. Terblanche 《Entomologia Experimentalis et Applicata》2014,150(2):113-122
Understanding tolerance of thermal extremes by pest insects is essential for developing integrated management strategies, as tolerance traits can provide insights into constraints on activity and survival. A major question in thermal biology is whether thermal limits vary systematically with microclimate variation, or whether other biotic or abiotic factors can influence these limits in a predictable manner. Here, we report the results of experiments determining thermal limits to activity and survival at extreme temperatures in the stalk borer Eldana saccharina Walker (Lepidoptera: Pyralidae), collected from either Saccharum spp. hybrids (sugarcane) (Poaceae) or Cyperus papyrus L. (Cyperaceae) and then reared under standard conditions in the laboratory for 1–2 generations. Chill‐coma temperature (CTmin), critical thermal maximum (CTmax), lower lethal temperatures (LLT), and freezing temperature between E. saccharina collected from the two host plants were compared. CTmin and CTmax of E. saccharina moths collected from sugarcane were significantly lower than those from C. papyrus (CTmin = 2.8 ± 0.4 vs. 3.9 ± 0.4 °C; CTmax = 44.6 ± 0.1 vs. 44.9 ± 0.2 °C). By contrast, LLT of moths and freezing temperatures of pupae did not vary with host plant [LLT for 50% (LT50) of the moth population, when collected from sugarcane: ?3.2 ± 0.5 °C, from C. papyrus: ?3.9 ± 0.8 °C]. Freezing temperatures of pupae collected from C. papyrus were ?18.0 ± 1.0 °C and of those from sugarcane ?17.5 ± 1.8 °C. The E. saccharina which experienced the lowest minimum temperature (in C. papyrus) did not have the lowest CTmin, although the highest estimate of CTmax was found in E. saccharina collected from C. papyrus and this was also the microsite which reported the highest maximum temperatures. These results therefore suggest that host plant may strongly mediate lower critical thermal limits, but not necessarily LLT or freezing temperatures. These results have significant implications for ongoing pest management and thermal biology of these and other insects. 相似文献
8.
J. S. Terblanche Z. de Jager L. Boardman P. Addison 《Journal of Applied Entomology》2014,138(9):683-691
The ability of a pest insect species to enter diapause, a physiological state of dormancy, has significant implications for population dynamics and pest management practises in agricultural landscapes. The false codling moth Thaumatotibia leucotreta is a major pest of deciduous and citrus fruit in southern Africa and a quarantine pest of international concern. Apart from an early field assessment that may have been compromised by taxonomic uncertainty surrounding cryptic developing life stages, no studies have investigated diapause induction within an experimental framework for this species, and none to date have used a suite of physiological traits potentially indicative of the diapause state. Here, we subjected larvae to cooling and shortening day length over a period of 14 days [Diapause Treatment (DT) group] relative to a similar‐aged control (CON) group held at optimal rearing conditions (25°C, 12 : 12 L : D) and tested if physiological traits, including resting metabolic rate, body freezing temperature (=supercooling point, equivalent to the low‐temperature mortality threshold) and body condition (body mass, body lipid and water content) varied in a direction that may be reflective of diapause induction. Mean metabolic rate in DT larvae was 0.044 ml CO2/h (mean mass: 52.7 mg), which was significantly higher than in CON larvae [0.025 ml CO2/h, mean mass: 51.5 mg (P = 0.04)]. Supercooling points were not statistically lower in the CON group than in DT larvae (DT:?15.6 ± 1.5°C; CON: ?16.4 ± 2.8°C; P = 0.33). Measures of body size, body condition and resting water loss rates remained similar between groups. These results support the conclusion of early field observations that T. leucotreta does not undergo diapause that has significant implications for the management of the species. 相似文献
9.
Nigel R. Andrew Robert A. Hart Myung-Pyo Jung Zac Hemmings John S. Terblanche 《Journal of insect physiology》2013
Insects in temperate regions are predicted to be at low risk of climate change relative to tropical species. However, these assumptions have generally been poorly examined in all regions, and such forecasting fails to account for microclimatic variation and behavioural optimisation. Here, we test how a population of the dominant ant species, Iridomyrmex purpureus, from temperate Australia responds to thermal stress. We show that ants regularly forage for short periods (minutes) at soil temperatures well above their upper thermal limits (upper lethal temperature = 45.8 ± 1.3 °C; CTmax = 46.1 °C) determined over slightly longer periods (hours) and do not show any signs of a classic thermal performance curve in voluntary locomotion across soil surface temperatures of 18.6–57°C (equating to a body temperature of 24.5–43.1 °C). Although ants were present all year round, and dynamically altered several aspects of their thermal biology to cope with low temperatures and seasonal variation, temperature-dependence of running speed remained invariant and ants were unable to elevate high temperature tolerance using plastic responses. Measurements of microclimate temperature were higher than ant body temperatures during the hottest part of the day, but exhibited a stronger relationship with each other than air temperatures from the closest weather station. Generally close associations of ant activity and performance with microclimatic conditions, possibly to maximise foraging times, suggest I. purpureus displays highly opportunistic thermal responses and readily adjusts behaviour to cope with high trail temperatures. Increasing frequency or duration of high temperatures is therefore likely to result in an immediate reduction in foraging efficiency. In summary, these results suggest that (1) soil-dwelling temperate insect populations may be at higher risks of thermal stress with increased frequency or duration of high temperatures resulting from climate change than previously thought, however, behavioural cues may be able to compensate to some extent; and (2) indices of climate change-related thermal stress, warming tolerance and thermal safety margin, are strongly influenced by the scale of climate metrics employed. 相似文献
10.
Gohil K.; Packer L.; de Lumen B.; Brooks G. A.; Terblanche S. E. 《Journal of applied physiology》1986,60(6):1986-1991
The effects of dietary antioxidant vitamins E and C on exercise endurance capacity and mitochondrial oxidation were investigated in rats. The endurance capacity of both vitamin E-deficient and vitamin C-supplemented, E-deficient rats was significantly (P less than 0.05) lower (38.1 and 33.6%, respectively) than control animals. Compared with the normal and vitamin E-deficient rats, there was a significant (P less than 0.05) increase in the concentration of vitamin C in blood and liver of the vitamin E-deficient, C-supplemented animals. Hence dietary vitamin C supplementation does not prevent the inhibition of exercise endurance capacity or increased hemolysis seen in vitamin E deficiency. The mitochondrial activities for the oxidation of palmitoyl carnitine and alpha-ketoglutarate were significantly (P less than 0.05) decreased by a single bout of exercise in brown adipose tissue but not in muscle, heart, or liver from vitamin C-supplemented, E-deficient groups of rats when compared with the activities in the tissue from the same group of rats killed at rest. Similar results were also seen in brown adipose tissue from vitamin E-deficient rats. The results suggest a tissue-specific role for vitamins E and C in substrate oxidation and show that the poor endurance capacity of vitamin E-deficient rats cannot be attributed to any changes in the mitochondrial activity in skeletal or cardiac muscles. It is also concluded that vitamin C supplementation, at least at the dose employed in the present study, cannot counteract the detrimental effects associated with vitamin E deficiency. 相似文献