首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   390篇
  免费   30篇
  2023年   3篇
  2022年   7篇
  2021年   7篇
  2020年   3篇
  2019年   4篇
  2018年   8篇
  2017年   3篇
  2016年   6篇
  2015年   10篇
  2014年   10篇
  2013年   18篇
  2012年   21篇
  2011年   29篇
  2010年   12篇
  2009年   16篇
  2008年   16篇
  2007年   22篇
  2006年   16篇
  2005年   8篇
  2004年   17篇
  2003年   22篇
  2002年   16篇
  2001年   8篇
  2000年   12篇
  1999年   5篇
  1998年   2篇
  1997年   6篇
  1996年   3篇
  1994年   4篇
  1993年   5篇
  1992年   10篇
  1991年   16篇
  1990年   9篇
  1989年   2篇
  1988年   6篇
  1987年   4篇
  1986年   4篇
  1985年   5篇
  1984年   4篇
  1983年   2篇
  1982年   3篇
  1981年   4篇
  1980年   5篇
  1979年   3篇
  1978年   3篇
  1977年   3篇
  1976年   2篇
  1971年   3篇
  1963年   4篇
  1941年   1篇
排序方式: 共有420条查询结果,搜索用时 31 毫秒
1.
Summary A temperature shift-up accompanied by a reduction in RNA polymerase activity in Escherichia coli causes an increased rate of initiation leading to a 1.7- to 2.2-fold increase in chromosome copy number. A temperature shift-up without a reduction in polymerase activity induces only a transient non-scheduled initiation of chromosome replication caused by heat shock with no detectable effect on chromosome copy number.  相似文献   
2.
Special issue dedicated to Dr. Louis Sokoloff.  相似文献   
3.
Lipid peroxidation in Peridinium samples taken from two differentdepths in Lake Kinneret fluctuated throughout the spring withan overall increasing trend. Samples from 0.5 and 5 m showeda similar peroxidation pattern, which was maximal after thefall off in algal biomass. The rapid decline in Peridinium biomasscoincided with ambient lake temperatures of 21–23C. Fattyacid composition profiles were similar at both depths, althoughafter the peak of the bloom, a significant increase in polyunsaturatedfatty acids and oleic acid was only found at 0.5 m, togetherwith a decrease in the percentage of polyunsaturated fatty acids.These effects were related to ambient light stress rather thana result of lipid peroxidation. Lake samples taken at differentperiods of the bloom and incubated at various temperatures showeddifferential peroxidation. Higher temperatures caused increasedlipid peroxidation, but this appeared to be dependent on thesampling period. Samples withdrawn from the lake at the beginningof the bloom showed little peroxidation after a 5 day incubationat 14C, room temperature (25C) or ambient lake temperature(16C) compared to mid-bloom samples in which there was a significantincrease in peroxidation when they were incubated at room temperature(25C) or ambient lake temperature (22C). Incubation at 14Cinhibited peroxidation; however, samples from mid-bloom againshowed enhanced peroxidation compared with those from the beginningof the bloom. These in situ results suggested a relationshipbetween temperature, another environmental variable during thebloom and lipid peroxidation in Peridinium. As total dissolvedinorganic carbon (DIC) concentrations fall significantly duringthe progress of the bloom and represent an important sourceof environmental stress, laboratory experiments were establishedto investigate the synergistic effect of temperature and carbonnutrition on lipid peroxidation in Peridinium cultures. Increasedtemperature alone caused a slight increase in lipid peroxidation,but this was greatly augmented by carbon limitation. Althoughcarbon limitation induced increased catalase activity, at highertemperatures activity declined after 48 h, allowing for thesubstantial increase in lipid peroxidation.  相似文献   
4.
Current perspectives on plasmodesmata: structure and function   总被引:2,自引:0,他引:2  
Recent studies on plasmodesmata have shown that these important intercellular passages for communication and transport are much more sophisticated in both structure and regulatory abilities than previously imagined. A complex, but not well understood, substructure has been revealed by a variety of increasingly reliable ultrastructural techniques. Proteinaceous particles are seen within the cytoplasmic sleeve surrounding the desmotubule. Dye-coupling studies have provided experimental evidence for the physical pathway of solute movement, supporting conclusions about substructural dimensions within plasmodesmata drawn from the ultrastructural studies. Calcium has been identified as a major factor in the regulation of intercellular communication via plasmodesmata. Evidence from studies on virus movement through plasmodesmata suggests a direct interaction between virallycoded movement proteins and plasmodesmata in the systemic spread of many viruses. There is increasing evidence, albeit indirect, that in some plant species phloem loading may involve transport of photoassimilate entirely within the symplast from mesophyll cells to the sieve element-companion cell complexes of minor veins.  相似文献   
5.
Oxidative stress responses were tested in the unicellular cyanobacterium Synechococcus PCC 7942 (R2). Cells were exposed to hydrogen peroxide, cumene hydroperoxide and high light intensities. Activities of ascorbate peroxidase and catalase were correlated with the extent and time-course of oxidative stresses. Ascorbate peroxidase was found to be the major enzyme involved in the removal of hydrogen peroxide under the tested oxidative stresses. Catalase activity was inhibited in cells treated with high H2O2 concentrations, and was not induced under photo-oxidative stress. Regeneration of ascorbate in peroxide-treated cells was found to involve mainly monodehydroascorbate reductase and to a lesser extent dehydroascorbate reductase. The induction of the antioxidative enzymes was dependent on light and was inhibited by chloramphenicol. Peroxide treatment was found to induce the synthesis of eight proteins, four of which were also induced by heat shock.Abbreviations ASC ascorbate - DHA dehydroascorbate - MDA monodehydroascorbate - GSH reduced glutathione - GSSG oxidized glutathione - ASC Per ascorbate peroxidase - DHA red. dehydroascorbate reductase - MDA red. monodehydroascorbate reductase - GSSG red. glutathione reductase - HSP heat shock proteins - PSP peroxide shock proteins - Cm chloramphenicol  相似文献   
6.
The mechanism of resistance to gentamicin and tobramycin in a clinical isolate ofAcinetobacter baumannii, in which aminoglycoside-modifying enzymes were not detected, was investigated. For increase of the resistance gene product, DNA prepared from theA. baumannii isolate was cloned into pUC18 and introduced intoEscherichia coli by transformation. Gentamicin-resistant transformants were screened for aminoglycoside-modifying enzymes. This approach identified two genes encoding AAC(3) and AAD(2) activity, respectively. To determine whether both genes are expressed in the hostAcinetobacter strain, we extracted total cellular RNA from this strain, and Northern blots were hybridized with the cloned AAC(3) and AAD(2) structural genes. mRNA transcribed from the AAC(3) gene alone was detected. This shows that cloning a functional resistance gene is not sufficient in itself to investigate mechanisms of resistance in bacterial strains without detectable aminoglycoside-modifying activity. Furthermore, this study suggests a potential limitation of antibiotic resistance gene probes for studying mechanisms of resistance.  相似文献   
7.
8.
Plasma membranes of the marine cyanobacterium Spirulina subsalsa were tested for ATPase activity, and for involvement in salt stress. Transition of cells from saline to hypersaline medium enhances the respiratory activity associated with extrusion of Na+ and Cl, and persisting salt stress induces synthesis of respiratory enzymes in the plasma membranes. The membranes possess an ATPase, specific for ATP and Mg2+ and sensitive to orthovanadate and dicyclohexylcarbodiimide. Immunoblot analysis of plasma membrane polypeptides from Spirulina subsalsa with anti- Arabidopsis H+-ATPase serum identified a single polypeptide of 100 kDa, which cross-reacted with the antibodies. An unusual feature of this ATPase is a specific stimulation by Na+ ions. Prolonged adaptation of S. subsals cells to hypersaline conditions induced an increase in ATPase activity in subsequent plasma membrane preparations, as well as a higher content of the 100 kDa polypeptide. It is suggested that the ATPase investigated is an H+-pump, which is involved in extrusion of Na+ and in conferring resistance to salt stress.  相似文献   
9.
Minor-vein anatomy, sugar content, sugar synthesis, and translocation were studied in mature leaves of nine members of the Scrophulariaceae to determine if there is a correlation between companion-cell type and class of sugar translocated. Three types of companion cell were found: intermediary cells with extensive plasmodesmatal connections to the bundle sheath; transfer cells with wall ingrowths and few plasmodesmata; and ordinary companion cells with few plasmodesmata and no wall ingrowths. Alonsoa warscewiczii Regal., Verbascum chaixi Vill., and Mimulus cardinalis Dougl. ex. Benth. have intermediary cells and ordinary companion cells in the minor veins. These plants synthesize large amounts of raffinose and stachyose as well as sucrose. Nemesia strumosa Benth., and Rhodochiton atrosanguineum Zucc. have both intermediary cells and transfer cells and make proportionately less raffinose oligosaccharide than the species above. In N. strumosa, a single sieve element may abut both an intermediary cell and a transfer cell. The minor veins of Asarina scandens (Cav.) Penn. have transfer cells and what appear to be modified intermediary cells that have fewer plasmodesmata than other species, and occasional wall ingrowths. Asarina scandens synthesizes little raffinose or stachyose. Cymbalaria muralis P. Gaertn et al. and Linaria maroccana Hook.f. have only transfer cells and Digitalis grandiflora Mill. has only ordinary companion cells; these species make a trace of galactinol and raffinose, but no stachyose. Translocation experiments indicate that there is long-distance movement of raffinose oligosaccharide in these plants, even when it is synthesized in very small quantities in the leaves. We conclude that intermediary cells are as distinct a cell type as the transfer cell. In contrast to transfer cells, which are specialized for uptake of solute from the apoplast, intermediary cells are specialized for symplastic transfer of photoassimilate from the mesophyll and for synthesis of raffinose oligosaccharide. This supports our contention that raffinose oligosaccharide synthesis and symplastic phloem loading are mechanistically linked (Turgeon and Gowan 1990, Plant Physiol. 94, 1244–1249). Minor-vein anatomy and sugar synthesis may be useful characters in determining the phylogenetic relationships of plants in this family.We thank Andrea Wolfe and Wayne Elisens for helpful discussions on the taxonomy of the Scrophulariaceae. This research was supported by National Science Foundation grant DCB-9104159, U.S. Department of Agriculture Competetive Grant 92-37306-7819, and Hatch funds.  相似文献   
10.
Previous studies have shown that freshly explanted 6-day-old embryonic chick lens epithelial cells elongate, differentially increase their synthesis of δ-crystallin, and accumulate δ-crystallin mRNA when cultured with fetal calf serum; in contrast, precultured serum-starved 6-day-old and freshly explanted 19-day-old embryonic epithelial cells divide when treated with fetal calf serum. We have explored whether the stimulation of δ-crystallin gene expression (as measured by δ-crystallin synthesis and δ-crystallin mRNA accumulation) is affected by inhibiting lens cell elongation with colchicine, and whether δ-crystallin gene expression is increased in lens epithelial cells stimulated to divide by treatment with fetal calf serum, as it is in those stimulated to elongate by treatment with serum. Three new findings were made in this study. First, the stimulation of δ-crystallin gene expression does not require elongation of the cultured lens cells. Second, a decreased proportion of δ-crystallin synthesis is observed in lens epithelial cells during normal development and during serum starvation; in neither case is this decrease associated with a reduction in the number of δ-crystallin mRNA sequences per cell. Finally, serum stimulation of lens cell division does not increase the proportion of δ-crystallin synthesis, but can promote the accumulation of δ-crystallin mRNA. Thus, the relative proportion of δ-crystallin synthesized during chick lens development is not solely a function of the number of δ-crystallin mRNA sequences in the lens cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号