首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   829篇
  免费   170篇
  2021年   13篇
  2018年   9篇
  2017年   9篇
  2016年   10篇
  2015年   18篇
  2014年   22篇
  2013年   24篇
  2012年   28篇
  2011年   40篇
  2010年   18篇
  2009年   23篇
  2008年   22篇
  2007年   31篇
  2006年   30篇
  2005年   32篇
  2004年   31篇
  2003年   38篇
  2002年   32篇
  2001年   26篇
  2000年   35篇
  1999年   28篇
  1998年   20篇
  1997年   13篇
  1996年   9篇
  1994年   8篇
  1993年   11篇
  1992年   15篇
  1991年   27篇
  1990年   17篇
  1989年   14篇
  1988年   18篇
  1987年   10篇
  1986年   9篇
  1985年   15篇
  1984年   14篇
  1983年   17篇
  1982年   11篇
  1981年   12篇
  1980年   16篇
  1979年   21篇
  1978年   7篇
  1977年   16篇
  1976年   8篇
  1975年   14篇
  1974年   12篇
  1973年   15篇
  1972年   9篇
  1971年   12篇
  1969年   8篇
  1966年   9篇
排序方式: 共有999条查询结果,搜索用时 31 毫秒
1.
Summary A temperature shift-up accompanied by a reduction in RNA polymerase activity in Escherichia coli causes an increased rate of initiation leading to a 1.7- to 2.2-fold increase in chromosome copy number. A temperature shift-up without a reduction in polymerase activity induces only a transient non-scheduled initiation of chromosome replication caused by heat shock with no detectable effect on chromosome copy number.  相似文献   
2.
W M Atkins  S G Sligar 《Biochemistry》1988,27(5):1610-1616
The kinetics of NADH consumption, oxygen uptake, and hydrogen peroxide production have been studied for norcamphor metabolism by cytochrome P-450cam. The kinetic deuterium isotope effects on these processes, with specifically deuteriated norcamphor, are 0.77, 1.22, and 1.16, respectively. Steady-state UV-visible spectroscopy indicates that transfer of the second electron to the dioxy ferrous P-450 is the rate-limiting step, as it is when camphor is the substrate. The inverse deuterium isotope effect for NADH consumption is consistent with an isotope-dependent branching between monooxygenase and oxidase activity, where these reactivities differ in their NADH:oxygen stoichiometries. However, no isotope-dependent redistribution of steady-state intermediates was detected by isotopic difference UV-visible spectroscopy in the presence of norcamphor. The kinetic isotope effects and steady-state spectral results suggest that the high-valent iron-oxo hydroxylating intermediate [FeO]3+ is reduced by NADH and the physiological electron-transfer proteins to afford water.  相似文献   
3.
Lipid peroxidation in Peridinium samples taken from two differentdepths in Lake Kinneret fluctuated throughout the spring withan overall increasing trend. Samples from 0.5 and 5 m showeda similar peroxidation pattern, which was maximal after thefall off in algal biomass. The rapid decline in Peridinium biomasscoincided with ambient lake temperatures of 21–23C. Fattyacid composition profiles were similar at both depths, althoughafter the peak of the bloom, a significant increase in polyunsaturatedfatty acids and oleic acid was only found at 0.5 m, togetherwith a decrease in the percentage of polyunsaturated fatty acids.These effects were related to ambient light stress rather thana result of lipid peroxidation. Lake samples taken at differentperiods of the bloom and incubated at various temperatures showeddifferential peroxidation. Higher temperatures caused increasedlipid peroxidation, but this appeared to be dependent on thesampling period. Samples withdrawn from the lake at the beginningof the bloom showed little peroxidation after a 5 day incubationat 14C, room temperature (25C) or ambient lake temperature(16C) compared to mid-bloom samples in which there was a significantincrease in peroxidation when they were incubated at room temperature(25C) or ambient lake temperature (22C). Incubation at 14Cinhibited peroxidation; however, samples from mid-bloom againshowed enhanced peroxidation compared with those from the beginningof the bloom. These in situ results suggested a relationshipbetween temperature, another environmental variable during thebloom and lipid peroxidation in Peridinium. As total dissolvedinorganic carbon (DIC) concentrations fall significantly duringthe progress of the bloom and represent an important sourceof environmental stress, laboratory experiments were establishedto investigate the synergistic effect of temperature and carbonnutrition on lipid peroxidation in Peridinium cultures. Increasedtemperature alone caused a slight increase in lipid peroxidation,but this was greatly augmented by carbon limitation. Althoughcarbon limitation induced increased catalase activity, at highertemperatures activity declined after 48 h, allowing for thesubstantial increase in lipid peroxidation.  相似文献   
4.
5.
A highly sensitive method of ultrastructural-immunoperoxidase staining was developed for use with monoclonal antibodies which have been raised in this laboratory to a variety of antigens of the human kidney. Because of the susceptibility of the antigens to fixation and processing, a four layer, pre-embedding method of staining was used. Results confirmed and clarified previously reported light microscopy results, indicating that an antigen recognized by the PHM5 antibody was found on the podocyte cell membrane within the glomerulus and was not present within the glomerular basement membrane. The antigen was also present on the extraglomerular endothelial cell membrane. The study also demonstrated the presence of an antigen specific to endothelial cells throughout the renal cortex, and gave further insight into the precise localization of glomerular basement membrane components including fibronectin. The method of staining is now being used together with detailed ultrastructural studies to identify the cells produced from isolated glomeruli in tissue culture.  相似文献   
6.
7.
Blood coagulation factor X (FX) is converted to its active form (FXa) by a membrane bound multi-protein enzyme complex, comprised of factor VIII (FVIII), factor IXa (FIXa) and FX. Characterization of the molecular forces involved in the association of these proteins with phospholipids is crucial to understanding how these proteins bind to the lipid milieux of physiological membranes. In this report, the molecular forces involved in the association of FVIII, FIXa or FX with phospholipid vesicles (PLV) were characterized by ligand affinity chromatographic analyses. Treating FVIII-affinity columns with agents that disrupt electrostatic interactions caused elution of 15.2% of the total bound PLV, while agents that disrupt hydrophobic interactions caused elution of 84.8% of the total bound PLV. These results demonstrate that the association of PLV with FVIII is primarily hydrophobic. In contrast, the association of PLV with FIXa or FX is largely the result of electrostatic forces. This was established by observing that 71.3% and 78.9% of the total bound PLV was eluted from FIXa- and FX-affinity columns, respectively, by agents that disrupt electrostatic interactions. Of the total bound PLV, 28.7% and 21.2% were eluted from FIXa- and FX-affinity columns, respectively, by agents that disrupt hydrophobic interactions. These data demonstrate that hydrophobic forces play a heretofore unrecognized role in the association of PLV with FIXa or FX.  相似文献   
8.
C. A. Atkins 《Plant and Soil》1987,100(1-3):157-169
Summary Nitrogen (N2) fixed by Rhizobium bacteroids in the legume nodule is excreted as ammonia to the surrounding host cell where it is efficiently assimilated into the amide group of glutamine. Generally glutamine is a minor exported solute of nitrogen, being further metabolised to asparagine in temperate species and to the ureides, allantoin and allantoic acid in tropical species. These solutes serve as the principal translocated forms of nitrogen in xylem. Compartmentalisation of the pathways of nitrogen metabolism and the role of ammonia in regulation of their activity is examined in nodules of both asparagine-forming (Lupinus albus L.) and ureide-forming (Vigna unguiculata L. Walp) symbioses.  相似文献   
9.
10.
Allopurinol (1H-pyrazolo-[3,4-d]pyrimidine-4-ol), an inhibitor of xanthine oxidation in ureide-producing nodulated legumes, was taken up from the rooting medium, translocated in xylem, and transferred to nodules of both the ureide-forming cowpea (Vigna unguiculata L. Walp.) and the amide-forming white lupin (Lupinus albus L.). Cowpea suffered severe nitrogen deficiency, extreme chlorosis, and reduced growth, whereas lupin was unaffected by the inhibitor. Similar results were obtained with oxypurinol (1H-pyrazolo-[3,4-d]pyrimidine-4,6-diol). Xylem composition of symbiotic cowpea was markedly changed by allopurinol. Ureides fell to a very low level, but xanthine and, to a lesser extent, hypoxanthine increased markedly. Xylem glutamine was also reduced, but there was little change in other amino acids. Nitrogenase (EC 1.7.99.2) activity of intact nodulated plants or nodulated root segments of plants treated with allopurinol or oxypurinol for 24 hours or more was severely inhibited in cowpea but unaffected in lupin for periods of exposure up to 9 days. Nitrogenase activity of slices of nodules prepared from allopurinol-treated cowpea showed inhibition comparable to that of intact plants. Breis prepared from nodules of treated plants showed no reduction in nitrogenase, nor was there reduction in activity of breis following addition of allopurinol, xanthine, or a range of purine pathway intermediates. Increasing the O2 concentration in assays above 20% (volume/volume) reversed inhibition of nitrogenase by allopurinol in intact nodulated roots. It was concluded for cowpea that allopurinol not only inhibited ureide synthesis but also caused inhibition of nitrogenase activity, thereby leading to progressive dysfunction and eventual senescence of nodules. The mechanistic relationships between inhibition of ureide biosynthesis, changes in gaseous diffusion resistance, and reduced nitrogenase activity remain obscure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号