首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   258篇
  免费   7篇
  2014年   6篇
  2013年   8篇
  2012年   5篇
  2011年   4篇
  2010年   9篇
  2009年   4篇
  2008年   6篇
  2007年   5篇
  2006年   6篇
  2005年   6篇
  2004年   6篇
  2003年   6篇
  2002年   4篇
  2001年   14篇
  2000年   5篇
  1999年   8篇
  1998年   4篇
  1995年   4篇
  1994年   3篇
  1992年   6篇
  1991年   4篇
  1989年   10篇
  1988年   3篇
  1987年   5篇
  1986年   9篇
  1985年   8篇
  1984年   4篇
  1983年   2篇
  1982年   6篇
  1981年   2篇
  1980年   5篇
  1979年   5篇
  1978年   5篇
  1977年   5篇
  1975年   2篇
  1971年   2篇
  1951年   4篇
  1927年   2篇
  1925年   2篇
  1920年   2篇
  1917年   2篇
  1914年   2篇
  1912年   3篇
  1911年   7篇
  1910年   2篇
  1909年   4篇
  1908年   5篇
  1907年   3篇
  1906年   4篇
  1905年   3篇
排序方式: 共有265条查询结果,搜索用时 15 毫秒
1.
We have previously demonstrated that a 2H exposure of cultured pulmonary endothelial cells to ozone (0.0-1.0 ppm) in-vitro resulted in a concentration-dependent reduction of endothelial prostacyclin production (90% decrease at the 1.0 ppm level). Ozone-exposed endothelial cells, incubated with 20 uM arachidonate, also demonstrated a significant inhibition of prostacyclin synthesis. To further examine the mechanisms of the inhibition of prostacyclin synthesis, bovine pulmonary endothelial cells were exposed to 1.0 ppm ozone for 2H. A significant decrease in prostacyclin synthesis was found within 5 min of exposure (77 +/- 36% of air-exposed control values, p less than 0.05). Endothelial prostacyclin synthesis returned to baseline levels by 12H after ozone exposure, a time point which was similar to the recovery time of unexposed endothelium treated with 0.5 uM acetylsalicylic acid. Incubation of endothelial cells, previously exposed to 1.0 ppm ozone for 2 hours, with 4 uM PGH2 resulted in restoration of essentially normal prostacyclin synthesis. When endothelial cells were co-incubated with catalase (5 U/ml) during ozone exposure, no inhibition of prostacyclin synthesis was observed. Co-incubation with either heat-inactivated catalase or superoxide dismutase (10 U/ml) did not affect the ozone-induced inhibition of prostacyclin synthesis. These data suggest that H2O2 is a major toxic species produced in endothelial cells during ozone exposure and responsible for the inhibition of endothelial cyclooxygenase activity.  相似文献   
2.
Using two peroxidative systems (prostaglandin H synthase/arachidonic acid and horseradish peroxidase/H2O2) we observed GSH conjugate formation with a number of compounds including polycyclic aromatic hydrocarbon-diols (PAH-diols), insecticides, and steroids. Several of the conjugates were characterized by chromatography, uv-vis spectrophotometry, and FAB mass spectroscopy. Conjugate formation is dependent upon a functioning peroxidase, GSH, and is markedly enhanced (3- to 10-fold) by the inclusion of a number of reducing cosubstrates including phenol, uric acid, phenylbutazone, and acetaminophen. The mechanism of conjugate formation appears to involve addition of thiyl radical to alkene bonds conjugated to an electron releasing group probably by resonance stabilization of the carbon-centered radical intermediate. Thiyl radicals are formed either directly by GSH reduction of the peroxidase or indirectly by GSH reduction of radicals formed from reducing cosubstrates. The nitrone spin trap, 5,5-dimethyl-1-pyrroline N-oxide, which traps thiyl radicals, totally inhibits production of GSH conjugates in both peroxidative systems. Conjugation of PAH-diols, some of which are penultimate carcinogens, would prevent their metabolism to the diol-epoxides, an ultimate carcinogenic species of PAH. Conjugation by peroxidases appears to be a general pathway for glutathione conjugate formation that may lead to potential detoxification of chemicals.  相似文献   
3.
Quin2 and its analogs BAPTA, 5,5'-dimethyl BAPTA, 5,5'-difluoro BAPTA, fura-2, and indo-1 were developed to measure intracellular calcium concentrations. In this study we investigated whether quin2 and its analogs are susceptible to peroxidase-catalyzed oxidation. The hydroperoxidase activity of prostaglandin H synthase, like other peroxidases, is capable of oxidizing a wide variety of substrates. It was found that quin2 and its analogs served as reducing cofactors for the hydroperoxidase activity of prostaglandin H synthase, undergoing oxidation in the process. Furthermore, arachidonic acid metabolism was stimulated. Oxidation of quin2 and its analogs resulted in the formation of a carbon-centered radical, as could be detected by ESR, and in the formation of formaldehyde. Quin2 fluorescence decreased upon addition of arachidonic acid and prostaglandin H synthase. Furthermore, addition of calcium no longer resulted in an increase in quin2 fluorescence, as was observed prior to the addition of arachidonic acid and the enzyme. This indicates that one or more of the -N-CH2-COOH groups, which are responsible for the binding of calcium, were oxidized by the hydroperoxidase. Since prostaglandin H synthase is present in many cellular systems in which calcium concentrations are modulated, oxidation of the calcium probe might not only affect the measurement of intracellular calcium but could activate arachidonic acid metabolism as well.  相似文献   
4.
Murine spleen cells and purified B lymphocytes oxidized arachidonic acid via the lipoxygenase pathway. The major metabolite of both the whole spleen and enriched B lymphocytes was 12S-hydroxy-5,8-cis-10-trans-14-cis-eicosatetraenoic acid. A novel metabolite was observed that did not have an absorbance from 210 to 400 nm, indicating the absence of a conjugated double bond system. The new metabolite was converted to the methyl ester, reduced by platinum oxide, derivatized to the trimethylsilyl ether, and analyzed by gas chromatography-mass spectrometry. A major and a minor component were observed in the analysis of the new compound. The major component had major diagnostic ions indicating the presence of hydroxyl groups at C-12 and C-19. The minor component had major diagnostic ions indicating the presence of hydroxyl groups at C-12 and C-20. The new metabolites are characterized as a mixture of 12S,19- and 12S,20-dihydroxyeicosanoids presumably formed by hydroxylation and reduction of one or more double bonds of 12S-hydroxy-5,8-cis-10-trans-14-cis-eicosatetraenoic acid. These metabolites were formed predominantly with whole spleen lymphocytes but could be detected at longer incubation times or by using 12S-hydroxy-5,8-cis-10-trans-14-cis-eicosatetraenoic acid as the starting substrate with highly enriched B lymphocytes.  相似文献   
5.
The ESR spin trapping technique was used to study the first detectable radical intermediate in the oxidation of arachidonic acid by purified prostaglandin H synthase. The holoenzyme and the apoenzyme, reconstituted with either hematin or Mn2+ protoporphyrin IX, were investigated. Depending on the different types of enzyme activity present, arachidonic acid was oxidized to at least two free radicals. One of these radicals is thought to be the first ESR detectable radical intermediate in the conversion of arachidonic acid to prostaglandin G2 and was detected previously in incubations of ram seminal vesicle microsomes, which are rich in prostaglandin H synthase. The ESR findings correlated with oxygen incorporation into arachidonic acid and prostaglandin formation, where the spin trap inhibits oxygen incorporation and prostaglandin formation by apparently competing with oxygen for the carbon-centered radical. Substitution of arachidonic acid by octadeuterated (5, 6, 8, 9, 11, 12, 14, 15)-arachidonic acid confirmed that the radical adduct contained arachidonic acid that is bound to the spin trap at one of these eight positions. An attempt was made to explain the apparent time lag between the metabolic activity observed in the oxygraph measurements and the appearance of the trapped radical signals.  相似文献   
6.
Canine tracheal epithelial cells freshly isolated from mongrel dog trachea were used to study relationships between arachidonic acid metabolism and chloride ion movement. High performance liquid chromatography (HPLC) analysis of the cell incubation media after the addition of A23187 showed the presence of prostaglandin H synthase and lipoxygenase-derived metabolites. The major prostaglandin H synthase metabolite identified by HPLC, gas chromatography, and mass spectrometry was prostaglandin (PG) D2. The major lipoxygenase metabolites were leukotriene (LT) C4 and LTB4. LTB4 was identified by HPLC, UV spectroscopy, and gas chromatography. Straight phase HPLC of the methyl esters indicated only a minor formation of LTB4 isomers. LTC4 was identified by HPLC, UV spectroscopy, and conversion to LTD4 by gamma-glutamyl transpeptidase. Analysis by radioimmunoassays indicated approximately 1-2 ng of LTB4 and peptide LT formed by 10(6) cells after A23187 stimulation. The addition of ionophore A23187 caused a rapid release of arachidonic acid metabolites which was completed within 5 min of stimulation. Cl- secretion was measured in parallel studies of excised tracheas in Ussing chambers. Cl- secretion occurred at 2-3 min after the addition of ionophore, and the most rapid change occurred with the highest PGD2 concentrations. Indomethacin produced a concentration-dependent inhibition of PGD2 formation and Cl- movement. The addition of PGE2, PGD2, and PGH2 effectively stimulated Cl- secretion. LTC4 also stimulated Cl- secretion, but the stimulation was inhibited by indomethacin. These results indicate that canine tracheal epithelial cells metabolize arachidonic acid via both prostaglandin H synthase and lipoxygenase enzymes. It appears that endogenous PGD2 formation is the important variable controlling the Cl- ion movement in canine trachea.  相似文献   
7.
Incubation of radioactively labeled parasitized (Plasmodium berghei) erythrocytes (PE) with adherent peritoneal exudate cells in the presence of 10% (v/v) fresh mouse serum (NMS) resulted in the uptake of a proportion of radioactive material (PE). Inactivation of the added serum by heat or zymosan treatment resulted in diminished uptake of radioactivity. These results suggest that PE activated complement. Incubation of fresh NMS with PE reduced the hemolytic complement level of the serum as shown by its subsequent decreased ability to lyse antibody-coated rabbit red blood cells. No such effect was found when uninfected erythrocytes from either infected or uninfected blood were preincubated with fresh NMS. Thus, PE or PE-derived material activated complement. Addition of EGTA during incubation of fresh NMS with PE did not inhibit the decrease in complement level. This indicated that complement was activated by the alternative pathway. Complement levels decreased even when fresh NMS and PE were incubated in the presence of EDTA (which inhibits both classical and alternative pathway activation), suggesting that a complement activating factor (or a complement inhibitor) was released from the PE. However, lysis of PE after incubation with either fresh rabbit or guinea pig serum did not occur unless anti-mouse erythrocyte antibody was added. The production of a complement-activating factor by PE might explain part of the decreasing complement levels during infection and might enable the parasite to escape from a complement-mediated defense mechanism of the host.  相似文献   
8.
Peroxidative oxidation of bilirubin during prostaglandin biosynthesis   总被引:1,自引:0,他引:1  
The peroxidative oxidation of bilirubin has been characterized in the ram seminal vesicle microsomal system. The oxidation was monitored by following the loss in absorbance of bilirubin at 440 nm. Bilirubin behaves as a peroxidase substrate for prostaglandin H synthase. The oxidation may be initiated by the addition of arachidonic acid or peroxides to incubations containing ram seminal vesicle microsomes and bilirubin, and is sensitive to inhibition by reduced glutathione. The arachidonate-dependent oxidation, but not the peroxide-initiated case, is inhibited by indomethacin. Similar results were obtained using microsomal preparations from mouse, rat, and pig lungs. Spectral and chromatographic examination of the products of bilirubin oxidation in the ram seminal vesicle system demonstrate that biliverdin is produced in this system by the dehydrogenation of bilirubin, but that this product accounts for only about 15% of the bilirubin consumed. Biliverdin itself is not oxidized in this system. At least three highly polar, fluorescent products also are formed from bilirubin. Though not identified, these polar products differ markedly in chromatographic behavior from the major fluorescent products obtained following the singlet oxygen oxidation or the autoxidation of bilirubin.  相似文献   
9.
10.
We have analyzed a total of 12 different global and local multiple protein-sequence alignment methods. The purpose of this study is to evaluate each method's ability to correctly identify the ordered series of motifs found among all members of a given protein family. Four phylogenetically distributed sets of sequences from the hemoglobin, kinase, aspartic acid protease, and ribonuclease H protein families were used to test the methods. The performance of all 12 methods was affected by (1) the number of sequences in the test sets, (2) the degree of similarity among the sequences, and (3) the number of indels required to produce a multiple alignment. Global methods generally performed better than local methods in the detection of motif patterns.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号